homehome Home chatchat Notifications


Don't drag your feet with renewables: earlier switch saves money in the long run

Last one at the finish pays the bill!

Alexandru Micu
May 23, 2018 @ 3:35 pm

share Share

Adoption of the renewable energy systems we have today, rather than waiting around for better and cheaper ones, will keep costs down in the long term.

Wind turbine.

Image via Pexels.

A few exceptions notwithstanding, most nations in the world have officially pledged to cut down on greenhouse gas emissions. The concerted effort is meant to counter, or at least limit, global warming. One of the most significant measures that countries can take towards this goal is to ditch fossil fuels in favor of renewables in the energy sector.

However, here’s where the consensus ends, and the debate begins. Some think it’s better (financially) to make the change right away, others hold that we’re better off waiting for these technologies to refine some more. But only one side of the debate can be right. According to a new study published by researchers from the Imperial College London, it’s the former one.

Spend to save

Fossil fuels do have some undeniable advantages over renewables right now: they’re readily available, comparatively cheap, and their use is streamlined and uncomplicated following decades of use. Renewables, in contrast, require higher up-front investment and still ‘feel’ new to the public, making them seem risky.

It may seem, then, that the best course forward is to wait for the price of renewables, like solar power, to keep dropping. At the same time, there’s also a temptation to wait for future “unicorn technologies”, the team writes — technologies like next-generation battery storage, cheaper carbon-capture tech, or more exotic energy-generation systems such as fusion.

But waiting around for such game-changing technology before we change our electrical grids will actually cost us more money in the long term, the team reports. To get to this result, the team used the UK power system as a model. They simulated the behavior of utility companies based on market prices, giving them various amounts of foresight. On one extreme, these companies knew exactly what technologies were being developed, and exactly when they would become available, tailoring their construction plan through to 2050. On the other extreme, they didn’t have any foresight — they tailored their plans and built infrastructures based purely on what made financial sense over the next five years.

All simulations aimed to reduce the UK’s emission levels to match the pledges it made in under the Paris Agreement. Some simulations obtained these reductions by enforcing cuts, while others allowed markets to react to a price-on-emissions scheme. Based on their level of foresight, some utilities delayed shifting away from fossil to wait for unicorn techs, while other simply went ahead with the best currently-available tech — even if they were less price-competitive.

Power system cost 2050.

Total costs by 2050.
Image credits C. F. Heuberger et al., 2018, Nature.

Going against the grain of folk wisdom, the authors report that good things did not come to those who waited. The simulated companies that delayed transition saw higher total costs in the long term compared to those that pursued an aggressive strategy. Surprisingly, the single most important factor in overall costs wasn’t the appearance of a unicorn — it was how fast companies could make the shift from fossils. For example, utility companies that knew that such a piece of technology would become available in 2035 and waited for it paid more by 2050 than those who didn’t have any foresight but de-coupled from fossil fuels earlier.

But here in the real world, we don’t have the luxury of knowing the future, so let’s see what happened in the ‘no foresight’ case. In this case (the five-year-ahead planning condition), an aggressive strategy was more profitable overall than delaying, regardless of whether unicorn technologies made an appearance or not. In the case where there was no such technology, delaying ended up costing 60% more to hit the same emission targets, or simply failed to cut emissions to the desired levels.

Postponing the shift results in a worse mix of power plants by 2050, the authors explain. Utility companies that delayed the switch generally had to build more power plants than they actually needed to cover demand, and frequently shut down solar and wind generation units — which, in the absence of storage, would only intermittently supply power to the grid. But what’s cheap today won’t necessarily be cheap in 20 years from now, the team cautions, adding that power plants lock up capital investments for several decades.

Those who adopted systems like CO2 capture, battery storage, or renewables had less to pay through to 2050 as they didn’t have to invest in cutting emissions later on, so they had to build comparatively fewer plants. If unicorn technologies did pop up, early adoption was also at an advantage — it makes implementing these technologies cheaper and faster.

The paper “Impact of myopic decision-making and disruptive events in power systems planning” has been published in the journal Nature.

share Share

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes

Lab-Grown Beef Now Has Real Muscle Fibers and It’s One Step Closer to Burgers With No Slaughter

In lab dishes, beef now grows thicker, stronger—and much more like the real thing.

From Pangolins to Aardvarks, Unrelated Mammals Have Evolved Into Ant-Eaters 12 Different Times

Ant-eating mammals evolved independently over a dozen times since the fall of the dinosaurs.

Potatoes were created by a plant "love affair" between tomatoes and a wild cousin

It was one happy natural accident.

Quakes on Mars Could Support Microbes Deep Beneath Its Surface

A new study finds that marsquakes may have doubled as grocery deliveries.

Scientists Discover Life Finds a Way in the Deepest, Darkest Trenches on Earth

These findings challenge what we thought we knew about life in the deep sea.

Solid-State Batteries Charge in 3 Minutes, Offer Nearly Double the Range, and Never Catch Fire. So Why Aren't They In Your Phones and Cars Yet?

Solid state are miles ahead lithium-ion, but several breakthroughs are still needed before mass adoption.

What if the Secret to Sustainable Cities Was Buried in Roman Cement?

Is Roman concrete more sustainable? It's complicated.