homehome Home chatchat Notifications


New curing method paves the way to cheap, non-toxic, plastic radiation shielding

This could be used in fields ranging from medicine to space exploration.

Alexandru Micu
May 12, 2020 @ 7:44 pm

share Share

New research from the North Carolina State University points to a polymer embedded with bismuth trioxide particles as a possible replacement for today’s toxic radiation shielding materials such as lead.

Image via Pixabay.

The material is lightweight, can be manufactured quickly, and is effective at blocking ionizing radiation such as gamma rays. Such properties make it an ideal material for a wide range of applications ranging from medicine to space exploration.

No radiation past this point

“Traditional radiation shielding materials, like lead, are often expensive, heavy and toxic to human health and the environment,” says Ge Yang, an assistant professor of nuclear engineering at NC State and corresponding author of a paper on the work.

“This proof-of-concept study shows that a bismuth trioxide compound could serve as effective radiation shielding, while mitigating the drawbacks associated with traditional shielding materials.”

In the paper, the team details how this material — a “poly (methyl methacrylate) (PMMA) / Bi2O3 composite” — can be produced using a curing method that relies on ultraviolet (UV) light instead of traditional, high-temperature approaches, which are expensive and can take “even days” to perform. The UV method, by contrast, can cure this material in “the order of minutes at room temperature,” Yang explains.

Through their method, the team constructed samples of this polymer that contained up to 44% bismuth trioxide by weight. PMMA itself, which is standard ‘acrylic plastic’ lends optical clarity, abrasion resistance, hardness, and stiffness to the mixture, while the bismuth compound does all of the radiation shielding. It also “improved the micro-hardness to nearly seven times that of the pure PMMA”, the team explains. Microhardness is the hardness of a material as tested with a force of less than one Newton.

A 3D tomography of PMMA composite with 15.6% bismuth oxide by weight. (b) shows cross-section of the black phase, which contains more oxides and provides most of the radiation shielding, and (c) is a cross-section of the white phase, with more PMMA polymer.
Image credits Da Cao, Ge Yang, Mohamed Bourham, Dan Moneghan, (2020), NETech.

Lab tests showed that different concentrations of bismuth oxide provide varying levels of radiation shielding, with the one detailed here (44% weight) offering “excellent mechanical and shielding properties”.

“This is foundational work,” Yang says. “We have determined that the compound is effective at shielding gamma rays, is lightweight, and is strong. We are working to further optimize this technique to get the best performance from the material. We are excited about finding a novel radiation shielding material that works this well, is this light and can be manufactured this quickly.”

For the immediate future, the team wants to continue exploring the properties of the material, including its behavior under different heat levels.

The paper “Gamma radiation shielding properties of poly (methyl methacrylate) / Bi2O3 composites” has been published in the journal Nuclear Engineering and Technology.

share Share

A Radioactive Wasp Nest Was Just Found at an Old U.S. Nuclear Weapons Site and No One Knows What Happened

Wasp nest near nuclear waste tanks tested 10 times above safe radiation limits

Dinosaur Teeth Help Scientists Recreate the Air Dinosaurs Once Breathed

Dinosaurs inhaled air with four times more CO2 than today.

Coastal Flooding Is Much Worse Than Official Records Show — and No One’s Measuring It

There were big flaws in how we estimated floods in coastal communities.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

Huge Centuries-Old Human Figures Carved in Sandstone Are Suddenly Visible Again on Hawaii Beach

Beneath the shifting sands of an Oahu beach, ancient carvings — hidden for years — have suddenly reemerged.

A Popular Artificial Sweetener Could Be Making Cancer Treatments Less Effective

Sucralose may weaken immunotherapy by altering gut microbes and starving immune cells

AI Designs Computer Chips We Can't Understand — But They Work Really Well

Can we trust systems we don’t fully understand?

Strength Training Unlocks Anti-Aging Molecules in Your Muscles

Here’s how resistance training can trigger your body’s built-in anti-aging switch.

"Self-termination is most likely." This expert believes our civilization is on a crash course led by narcissistic leaders

Our civilization may be facing a “single gargantuan crash,” but collapse isn’t destiny. It’s a choice.

New DNA Evidence Reveals What Actually Killed Napoleon’s Grand Army in 1812

Napoleon's army was the largest Europe had ever seen, but in just a few months it was obliterated.