homehome Home chatchat Notifications


First biological function of mercury discovered

Purple Non Sulfur Bacteria may play a role in reducing the amount of methyl-mercury in the oceans by converting it to a less harmful form.Sincerely,

Rich Feldenberg
February 9, 2016 @ 2:48 pm

share Share

The element mercury (Hg) is extremely toxic to most organisms, including humans.  It’s deadly effects are thought to be due to it’s ability to block the function of certain key metabolic enzymes.  Being so toxic, it has long been thought that mercury had no biological functions in the living world at all.  At least that was presumption until a research team published the first evidence that a unique group of organisms can not only stand being around the stuff, but actually benefit by the presence of Mercury.   In a paper published this month in Nature Geoscience, D. S. Gregoire and A. J. Poulain show that photosynthetic microorganisms called purple non-sulfur bacteria can use mercury as an electron acceptor during photosynthesis.  These bacteria rely on a primitive form of photosynthesis that differs from the type common to plants.  In the case of photosynthesis in plants, water is used as an electron donor, with carbon dioxide the electron acceptor.  The result of this process is the production of sugars, the release of oxygen, and the removal of carbon dioxide from the air.  Purple non-sulfur bacteria, on the other hand, usually prefer to live in watery environments where light is available to them, but the oxygen levels are low.

Image via Wikipedia.

They use hydrogen as the electron donor, and an organic molecule such as glycerol or fatty acids, as the electron acceptor.  This also results in the production of sugars, but does not release oxygen or remove carbon dioxide from the atmosphere.  This process also generates too many electrons for for their organic electron donor to handle, leading to the potential for damage to other molecules in the cell.

The researcher showed that purple non-sulfur bacteria grow better when mercury is in their environment.  The reason seems to be that the bacteria use the mercury to accept those extra electrons, reducing mercury from a high oxidation state to a low one.  The oxidation state refers to the number of electrons that an atom can gain or lose.  In the case of mercury, when it goes to its low oxidation state after gaining the extra electrons, it becomes a vapor and evaporates away into the atmosphere.  In mercury’s high oxidation state it can form the soluble compound methyl-mercury, which can be toxic to other organisms.

It’s quite possible that the impact of mercury reduction by photosynthesis may extend far beyond the health of these unusual little microbes.  Jeffry K. Schaefer, in the Department of Environmental Sciences at Rutgers University speculates that, “By limiting methyl-mercury formation and accumulation in aquatic food webs from microorganisms to fish, this process may even contribute to less toxic mercury ultimately ending up on our dinner plates.”

Journal Reference:

A physiological role for HgII during phototrophic growth.  Nature Geoscience.  February 2016, Volume 9 No 2  pp121 – 125  D. S. Grégoire & A. J. Poulain  doi:10.1038/ngeo2629

Biogeochemistry: Better living through mercury.  Jeffry K. Schaefer.  Nature Geoscience: News and Views.  18, January 2016.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes