homehome Home chatchat Notifications


Programmable 3-D printed soft materials helps robots and drone make a soft landing

This is real custom work.

Tibi Puiu
October 4, 2016 @ 5:24 pm

share Share

This SciFi looking robot cube was fitted with a 3-D printed skin which absorbs most of the energy the robot would have usually transferred to the ground. Credit: MIT

This SciFi looking robot cube was fitted with a 3-D printed skin which absorbs most of the energy the robot would have usually transferred to the ground. Credit: MIT

A team from MIT made headlines after it showed it’s possible to use a 3-D printer to make programmable materials of various stiffness on the fly. The printer was capable of layering different types of materials together, like liquids and solids, so the resulting material is tailored with laser precision to meet certain needs.

For instance, robots can be made sturdier, as well as delivery drones which Amazon and Google are currently experimenting with. However, everything from shoes to helmets to car bumpers can be made using this technique freeing independent producers from having to rely on suppliers’ standard items that sometimes can be too soft or too stiff — but never exactly like we want them.

Genuine custom work

Rubber and plastic are the most used damper materials. These are commonly known as “viscoelastics” due to their properties which share qualities of both liquids and solids.

There are many perks to viscoelastic materials. They’re cheap, compact and readily available but commercially available options come in fixed shapes, sizes, and material properties. Since 3-D printing has become mainstream, we can now easily create almost any object we want, even those with complicated geometries. The material properties have been harder to customize, though — not as easily as drawing and extruding objects in a software, at least.

“It’s hard to customize soft objects using existing fabrication methods, since you need to do injection moulding or some other industrial process,” says Jeffrey Lipton, a post-doc at MIT’s Computer Science and Artificial Intelligence Laboratory(CSAIL). “3-D printing opens up more possibilities and lets us ask the question, ‘can we make things we couldn’t make before?”

The team led by CSAIL Director Daniela Rus used a standard 3D extrusion printer. However, they used a special material called TangoBlack+, which emulates rubber’s solid/liquid properties. Also important was the special technique developed at MIT which is related to previous work involving the ejection of droplets of different material layer-by-layer and then using UV light to solidify the non-liquids.

The robot’s ‘skin’ uses only 1/250 the amount of energy it transfers to the ground.

To demonstrate their work, Rus and colleagues designed and assembled a cube-shaped robot with a rigid body, which was enveloped in a ‘soft skin’ 3-D printed with the new technique. Power by batteries, the tiny bot uses four layers of looped metal strip, serving as a spring to propel the contraption.

With the help of the 3-D printed skin, the bot landed four times more precisely, prompting the researchers to suggest such a shock-absorber might become very useful for the future’s home delivery drones.

“That reduction makes all the difference for preventing a rotor from breaking off of a drone or a sensor from cracking when it hits the floor,” says Rus, who oversaw the project and co-wrote a related paper. “These materials allow us to 3-D print robots with visco-elastic properties that can be inputted by the user at print-time as part of the fabrication process.”

“Being able to program different regions of an object has important implications for things like helmets,” says Robert MacCurdy, another post-doc from Rus’ lab. “You could have certain parts made of materials that are comfortable for your head to rest on, and other shock-absorbing materials for the sections that are most likely to be impacted in a collision.”

share Share

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes

Lab-Grown Beef Now Has Real Muscle Fibers and It’s One Step Closer to Burgers With No Slaughter

In lab dishes, beef now grows thicker, stronger—and much more like the real thing.

From Pangolins to Aardvarks, Unrelated Mammals Have Evolved Into Ant-Eaters 12 Different Times

Ant-eating mammals evolved independently over a dozen times since the fall of the dinosaurs.

Potatoes were created by a plant "love affair" between tomatoes and a wild cousin

It was one happy natural accident.

Quakes on Mars Could Support Microbes Deep Beneath Its Surface

A new study finds that marsquakes may have doubled as grocery deliveries.

Scientists Discover Life Finds a Way in the Deepest, Darkest Trenches on Earth

These findings challenge what we thought we knew about life in the deep sea.

Solid-State Batteries Charge in 3 Minutes, Offer Nearly Double the Range, and Never Catch Fire. So Why Aren't They In Your Phones and Cars Yet?

Solid state are miles ahead lithium-ion, but several breakthroughs are still needed before mass adoption.

What if the Secret to Sustainable Cities Was Buried in Roman Cement?

Is Roman concrete more sustainable? It's complicated.