homehome Home chatchat Notifications


This computer clocks uses water droplets, manipulating information and matter at the same time

Computers and water don't mix well, but that didn't stop Manu Prakash, a bioengineering assistant professor at Stanford, to think outside the box. Using magnetic fields and droplets of water infused with magnetic nanoparticles, Prakash demonstrated a computing system that performs logic and control functions by manipulating H2O instead of electrons. Because of its general nature, the water clock can perform any operations a conventional CPU clock can. But don't expect this water-based computer to replace the CPU in your smartphone or notebook (electrons speed vs water droplet - not a chance). Instead, it might prove extremely useful in situations where logic operations and manipulation of matter need to be performed at the same time.

Tibi Puiu
June 10, 2015 @ 7:32 am

share Share

Computers and water don’t mix well, but that didn’t stop Manu Prakash, a bioengineering assistant professor at Stanford, to think outside the box. Using magnetic fields and droplets of water infused with magnetic nanoparticles, Prakash demonstrated a computing system that performs logic and control functions by manipulating H2O instead of electrons. Because of its general nature, the water clock can perform any operations a conventional CPU clock can. But don’t expect this water-based computer to replace the CPU in your smartphone or notebook (electrons speed vs water droplet – not a chance). Instead, it might prove extremely useful in situations where logic operations and manipulation of matter need to be performed at the same time.

Water computer

 Iron tracks, each 1 mm long, arranged at right angles to each other. This is the first fluid-based computer that controls multiple droplets simultaneously. Image: Nature Physics

Iron tracks, each 1 mm long, arranged at right angles to each other. This is the first fluid-based computer that controls multiple droplets simultaneously. Image: Nature Physics

As you can imagine, making a computer clock based on a fluid is no easy task. Prakash realized that one way to manipulate the flow is through an external magnetic field. He designed a series of T and I-shaped tiny pieces of iron and strategically placed them on a glass slide. Then another glass is placed on top with a layer of oil sandwiched in between. Water droplets infused with magnetic nanoparticles are then carefully infused into the system. Electromagnetic coils placed around the machine manipulate and direct the droplets, very similarly to how this ferrofluid artistic rendering work.

GIF: coils and droplets racing inside the grooves. YouTube

GIF: coils and droplets racing inside the grooves. YouTube

Depending on how they placed the metal shapes, the droplets would travel along a distinct pattern. Once the magnetic field is turned on, each rotation of the field is counted as one clock cycle. With each cycle, every drop marched exactly one step forward, as recorded in the video below.

The design of the iron tracks is essential, as Physics World reports:

“If the base was just a sheet of iron with no tracks, the droplets would travel around in circles, following the energy minima created by the field. However, by carefully designing the iron tracks and incorporating breaks at the right places, the researchers can create a “ratchet” effect whereby every complete rotation causes a droplet to move into an adjacent energy minimum. Therefore, instead of travelling in circles, a droplet moves in a specific direction through the circuit. Furthermore, by creating two tracks that are mirror images of each other, two droplets will rotate in opposite directions in response to the same field.”

Because of a combination of hydrodynamic and magnetic forces, the droplets repel each other. This is a good thing, since it keeps them separated and allows for the water-based equivalent of a digital transistor. If the droplet is in a specific location the value “1” is given, “0” if absent. Basically, this is the basis for a droplet logic gate. Since the machine works with fluids, virtually any kind of fluid chemical can be introduced into the computer. This way, scientists can sort and mix chemicals on the fly, while also performing computing operations. But the ultimate purpose isn’t to superseed a digital processor. It’s about much more than that – the “algorithmic manipulation of matter”, which enables enable us to “learn to manipulate matter faster… in a fundamentally new way.” Findings appeared in Nature Physics.

“Imagine, when you run a set of computations wherein not only information is processed but also the physical matter is algorithmically manipulated. We have just made this possible at the mesoscale,” Prakash said.

Next, Prakash and colleagues are concentrating on scaling down the design.

 

 

share Share

Climate Change Unleashed a Hidden Wave That Triggered a Planetary Tremor

The Earth was trembling every 90 seconds. Now, we know why.

Archaeologists May Have Found Odysseus’ Sanctuary on Ithaca

A new discovery ties myth to place, revealing centuries of cult worship and civic ritual.

The World’s Largest Sand Battery Just Went Online in Finland. It could change renewable energy

This sand battery system can store 1,000 megawatt-hours of heat for weeks at a time.

A Hidden Staircase in a French Church Just Led Archaeologists Into the Middle Ages

They pulled up a church floor and found a staircase that led to 1500 years of history.

The World’s Largest Camera Is About to Change Astronomy Forever

A new telescope camera promises a 10-year, 3.2-billion-pixel journey through the southern sky.

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.