homehome Home chatchat Notifications


Is there such a thing as unjammable radar? Quantum imaging radar seems so

Detecting a potential threat before it occurs is the first step to preventing any aggression. In today’s wars, the scales favor the party that controls the air. Dominate the battle in the air, and you’ll dominate the battlefield ground side as well. It’s no secret to anyone that impressive aircraft detection systems have been developed […]

Tibi Puiu
December 17, 2012 @ 5:33 pm

share Share

Detecting a potential threat before it occurs is the first step to preventing any aggression. In today’s wars, the scales favor the party that controls the air. Dominate the battle in the air, and you’ll dominate the battlefield ground side as well. It’s no secret to anyone that impressive aircraft detection systems have been developed and deployed in the years past, however, every time, a counter was found. Recently, physicists at University of Rochester in New York have unveiled a novel technique based on quantum imaging that is potentially unjammable, making the detection of any object possible.

Unjammable radar

The first radar prototype came in 1936 and soon showed its value in the second World War, when it became an invaluable asset to the RAF, and a complete nightmare to the Lufftwaffe during the heavy battles over Britain. Initially radars were based on the clever principle that all metals reflect back radiowaves. For every weapon however, there’s an anti-weapon, and much in the same manner, anti-detection measures were employed and evolved along with radars. This includes drowning radar signals or launching false signals to trick the radars. One modern and highly effective anti-radar technique involves intercepting radar waves, modifying them and sending them back in such a manner that the information presented doesn’t catch the threat.

Now, Mehul Malik and colleagues believe they’ve developed a system that is able to detect aircraft without the other being capable of countering monitoring. Their technique harnesses the power of quantum imaging. Once a photon is measured, it instantly looses its quantum properties. Research in the field has been used particularly in data encryption, however the Rochester University researchers harnessed these properties in radar imaging as well.

A radar that can not be fooled

Basically, the system works by using polarized photons to detect and image objects. Once they meet an object in the air, they bounce back to form an image. If the aircraft makes an attempt to intercept these photons and change the information it conveys, then inevitably a disruption occurs and this can be registered. It’s pretty clear then for the radar system that something’s out there. The process is irreversible, so the technique is basically unjammable.

“In order to jam our imaging system, the object must disturb the delicate quantum state of the imaging photons, thus introducing statistical errors that reveal its activity,” say Malik and co.

Malik and co have tested their idea by bouncing photons off an aeroplane-shaped target and measuring the polarization error rate in the return signal. Without any eavesdropping the system easily imaged the aeroplane, however when the other end tried to alter the signal to send back the image of a bird, the interference was easy to spot.

It sounds perfect, but it’s not. Since it’s based on the same principles as quantum encryption, which has been around for some time and is still in its incipient age, one can infer the same advantages and disadvantages. It too, like this novel radar system, is uncrackable in theory – in practice not so much. Still this is highly interesting, and armed with such a sophisticated means of detection, countries could protect their boarder a lot better.

The quantum imaging radar was described in the journal Applied Physical Letters.

share Share

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

This Wild Laser Setup Reads Tiny Letters From Over 1.3 Kilometers Away

A 1950s astronomy technique was used to read pea-sized letters over 1.3 kilometers away.

Golden Dome or Glass Ceiling? Why Physicists Say Trump's Planetary-Scale Defense System Might Never Work

Inside Trump's $175 billion plan to build a missile shield in space.

France has a new laser rifle that can melt electronics from 500 meters away

This isn’t your average battlefield weapon.

The Strongest Solar Storm Ever Was 500 Times More Powerful Than Anything We've Seen in Modern Times. It Left Its Mark in a 14,000-Year-Old Tree

The ancient event, over 500 times stronger than any modern storm, would be devastating were it to happen today.

This is absolutely the best way to crack an egg, according to science

The side of the egg is, surprisingly, more resilient. It acts like a shock absorber.