homehome Home chatchat Notifications


Thermal levitation can lift any object in the air, unlike other methods that work on magnetization or optical light

Large objects were levitated by exploiting temperature differences. This method works with any kind of object.

Tibi Puiu
February 17, 2017 @ 1:57 pm

share Share

Macroscopic objects were levitated between warm and cold plates in a vacuum chamber. Credit: Jean Lachat.

Macroscopic objects were levitated between warm and cold plates in a vacuum chamber. Credit: Jean Lachat.

Levitation might seem like the stuff of magic but in the past decade alone, many researchers have shown it can be done by exploiting various physical phenomena. Maglev trains, for instance, literally float on train tracks thanks to powerful electromagnets. Magnets and superconductors can levitate objects thanks to quantum mechanics. You can even use lasers or acoustic waves to make some particles levitate.

Physics of the impossible

These are all very powerful demonstration of science, however, each of these methods only works with certain objects. Now, a novel levitation technique developed at the University of Chicago can lift particles of virtually any nature. The method works by exploiting temperature differences.

“Magnetic levitation only works on magnetic particles, and optical levitation only works on objects that can be polarized by light, but with our first-of-its-kind method, we demonstrate a method to levitate generic objects,” said lead researcher Cheng Chin, a professor of physics.

Various objects, ranging from balls of ceramic to glass to seeds, were placed in a vacuum between two plates. The bottom one is made of copper and has a constant room temperature while the top stainless steel plate is cooled to nearly -300º F (-184º C) by liquid nitrogen. Naturally, the heat gradient moves from the bottom plate, which is warmer, to the top plate. Because the temperature difference is so huge, this variation can sweep particles along the gradient.

“The large temperature gradient leads to a force that balances gravity and results in stable levitation,” says Frankie Fung, lead author of the study. “We managed to quantify the thermophoretic force and found reasonable agreement with what is predicted by theory. This will allow us to explore the possibilities of levitating different types of objects.”

For objects to levitate stably, a delicate balance between many parameters had to be achieved. These include the relative size of the plates, the distance between them or the surface of the bottom plate which needs to be perfectly horizontal otherwise objects float off-center.

“Only within a narrow range of pressure, temperature gradient and plate geometric factors can we reach stable and long levitation,” says Chin. “Different particles also require fine adjustment of the parameters.”

Some of the advantages of thermophoretic levitation over magnetic or optical levitation include a longer duration time (levitation was sustained for up to an hour as opposed to mere minutes) or orientation (levitation was sustained both radially and vertically as opposed to just vertical using other methods).

So far, only particles smaller than 1cm (0.4 in.) in size were levitated using thermophoretic force. The next step is to try it out with larger objects.

Besides being a neat science trick, thermal levitation could help researchers, for instance, study the effects of microgravity on biological organisms without having to send stuff in space. Because no touching is involved, the technique could prove useful for handling hazardous materials which can lead to contamination. And not least, such work is very important for fundamental research as we might learn more about how particles interact and bind.

“It offers new avenues for mass assembly of tiny parts for micro-electro-mechanical systems, for example, and to measure small forces within such systems,” says Thomas Witten, a UChicago professor who wasn’t involved in the study. “Also, it forces us to re-examine how ‘driven gases,’ such as gases driven by heat flow, can differ from ordinary gases. Driven gases hold promise to create new forms of interaction between suspended particles.”

Journal reference: “Stable thermophoretic trapping of generic particles at low pressures,” by Frankie Fung, Mykhaylo Usatyuk, B. J. DeSalvo and Cheng Chin in Applied Physics Letters, Jan. 20, 2017. DOI 10.1063/1.4974489

share Share

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

Want to make the perfect pasta? Physics finally has the answer

Cacio e pepe has just three ingredients, but mastering it is harder than it looks.

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.

Ice Age Humans in Ukraine Were Masterful Fire Benders, New Study Shows

Ice Age humans mastered fire with astonishing precision.

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.

University of Zurich Researchers Secretly Deployed AI Bots on Reddit in Unauthorized Study

The revelation has sparked outrage across the internet.

Giant Brain Study Took Seven Years to Test the Two Biggest Theories of Consciousness. Here's What Scientists Found

Both came up short but the search for human consciousness continues.

The Cybertruck is all tricks and no truck, a musky Tesla fail

Tesla’s baking sheet on wheels rides fast in the recall lane toward a dead end where dysfunctional men gather.

British archaeologists find ancient coin horde "wrapped like a pasty"

Archaeologists discover 11th-century coin hoard, shedding light on a turbulent era.

Astronauts May Soon Eat Fresh Fish Farmed on the Moon

Scientists hope Lunar Hatch will make fresh fish part of space missions' menus.