homehome Home chatchat Notifications


The Leidenfrost effect and a cool water maze

Last week we showed you some great fluid dynamics at work – water bridges between two beakers connected to high voltage current. Water and fluids in particular sometimes behave in amazing ways under certain conditions. Today, I’d like to show another dazzling display: the Leidenfrost effect. This is a phenomenon that occurs when liquid, say […]

Tibi Puiu
October 3, 2013 @ 3:13 am

share Share

water-droplet

(c) YouTube screenshot

Last week we showed you some great fluid dynamics at work – water bridges between two beakers connected to high voltage current. Water and fluids in particular sometimes behave in amazing ways under certain conditions. Today, I’d like to show another dazzling display: the Leidenfrost effect. This is a phenomenon that occurs when liquid, say water, is in near contact with a mass significantly hotter than the liquid’s boiling point, producing an insulating vapor layer which keeps that liquid from boiling rapidly and keeps the surfaces separate. You’ve likely seen in it action countless times but never knew what’s it called. For instance, when you heat a frying pan at or above the Leidenfrost point (typically two times the boiling point of water) and then sprinkle some droplets of water to check the temperatures  the water skitters across the metal and takes longer to evaporate than it would in a skillet that is above boiling temperature, but below the temperature of the Leidenfrost point.

When this effect is coupled with jagged surfaces, you can control the direction in which the water droplets jitter. To demonstrate this, University of Bath undergraduate students Carmen Cheng and Matthew Guy built a cool maze which basically guides the water through the various cavities. Check it out in the video below.

It’s important to note that the Leidenfrost effect doesn’t necessarily work at extra boiling point temperatures. The phenomenon works at extremely low temperatures too, as long as there’s a great temperatures difference between the fluid and the other surface. For instance, in the video demonstration below a daredevil sprinkles his hand with water and then dips it in liquid nitrogen for a few seconds. In normal conditions, the hand would have been frozen stiff, but the intense temperature difference between the water at room temperature and liquid nitrogen (-346°F and -320.44°F or 63 K and 77.2 K) creates a thin film barrier protecting the hand. Don’t try this at home!

share Share

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

This Wild Laser Setup Reads Tiny Letters From Over 1.3 Kilometers Away

A 1950s astronomy technique was used to read pea-sized letters over 1.3 kilometers away.

Golden Dome or Glass Ceiling? Why Physicists Say Trump's Planetary-Scale Defense System Might Never Work

Inside Trump's $175 billion plan to build a missile shield in space.

France has a new laser rifle that can melt electronics from 500 meters away

This isn’t your average battlefield weapon.

The Strongest Solar Storm Ever Was 500 Times More Powerful Than Anything We've Seen in Modern Times. It Left Its Mark in a 14,000-Year-Old Tree

The ancient event, over 500 times stronger than any modern storm, would be devastating were it to happen today.

This is absolutely the best way to crack an egg, according to science

The side of the egg is, surprisingly, more resilient. It acts like a shock absorber.