homehome Home chatchat Notifications


Terahertz-speed RAM and hard drives now possible through all-optical switching

Driven by technological demand to breach the gigahertz (10^9 hertz) switching speed limit of today’s magnetic memory and logic devices, a team of researchers have devised a novel technique of switching magnetism that is at least 1000 times faster than that currently employed opening up the terahertz age (10^12 hertz). Hard drives, magnetic random access memory (RAM) and other computing […]

Tibi Puiu
April 4, 2013 @ 7:55 am

share Share

Driven by technological demand to breach the gigahertz (10^9 hertz) switching speed limit of today’s magnetic memory and logic devices, a team of researchers have devised a novel technique of switching magnetism that is at least 1000 times faster than that currently employed opening up the terahertz age (10^12 hertz).

Hard drives, magnetic random access memory (RAM) and other computing devices typically employ magnetic switching to encode information and the speed at which this occurs governs how fast at their own term these devices can write, read, store and compute information.

Magnetic structure in a colossal magneto-resistive manganite is switched from antiferromagnetic to ferromagnetic ordering during about 100 femtosecond (10^-15 s) laser pulse photo-excitation. With time so short and the laser pulses still interacting with magnetic moments, the magnetic switching is driven quantum mechanically– not thermally. This potentially opens the door to terahertz (10^12 hertz) and faster memory writing/reading speeds.(credit: DOE Ames Laboratory)

Magnetic structure in a colossal magneto-resistive manganite is switched from antiferromagnetic to ferromagnetic ordering during about 100 femtosecond (10^-15 s) laser pulse photo-excitation. With time so short and the laser pulses still interacting with magnetic moments, the magnetic switching is driven quantum mechanically– not thermally. This potentially opens the door to terahertz (10^12 hertz) and faster memory writing/reading speeds.(credit: DOE Ames Laboratory)

Scientists the U.S. Department of Energy’s Ames Laboratory, Iowa State University, and the University of Crete in Greece have claim they have breached the terahertz barrier for magnetic memory technologies using laser pulses to create ultra-fast changes in the magnetic structure, within quadrillionths of a second (femtosecond), from anti-ferromagnetic to ferromagnetic ordering in colossal magnetoresistive materials (CMRs). Current commercial technology works at the gigahertz range.

Colossal magnetoresistive materials are a novel type of materials that promise to shape the way we judge performance once with their introduction in the next-generation memory and logic devices. CMRs are so appealing because of they’re amazingly responsive to the external magnetic fields used to write data into memory, but do not require heat to trigger magnetic switching.

Current magnetic storage and magneto-optical recording technology work to encode information by employing both optics and heat. To be more specific, typically a continuous laser light is used to zap  a ferromagnetic materials that heats up and vibrates. This vibration of the material’s atoms, in conjunction with a magnetic field, causes magnetic flips. The speed with which this  thermal magnetic switching occurs is thus limited since you need to wait for the atoms to become excited and vibrate, which makes it very difficult to cross the gigahertz  barrier. Devoid of such a limitation, by using all-optical switching, this limit can now be breached.

Ames Laboratory physicist Jigang Wang and his team used ultra-fast laser spectroscopy, shooting short pulses of laser light to excite a material and trigger a measurement all on the order of femtoseconds.

“In one CMR manganite material, the magnetic order is switched during the 100-femtosecond-long laser pulse. This means that switching occurs by manipulating spin and charge quantum mechanically,” said Wang. “In the experiments, the second laser pulse ‘saw’ a huge photo-induced magnetization with an excitation threshold behavior developing immediately after the first pump pulse.”

The fast switching speed and huge magnetization that Wang observed meet both requirements for applying CMR materials in ultra-fast, terahertz magnetic memory and logic devices.

“Our strategy is to use all-optical quantum methods to achieve magnetic switching and control magnetism. This lays the groundwork for seeking the ultimate switching speed and capabilities of CMR materials, a question that underlies the entire field of spin-electronics,” said Wang. “And our hope is that this means someday we will be able to create devices that can read and write information faster than ever before, yet with less power consumed.”

Findings were reported in the journal Nature.

share Share

After 100 years, physicists still don't agree what quantum physics actually means

Does God play dice with the universe? Well, depends who you ask.

Physicists Make First Qubit out of Antimatter and It Could One Day Explain Why the Universe Exists At All

Antimatter was held in a qubit state for nearly a minute.

A New AI Can Spot You by How Your Body Bends a Wi-Fi Signal

You don’t need a phone or camera to be tracked anymore: just wi-fi.

Scientists Superheated Gold to 14 Times Its Melting Point and It Remained Solid

No laws of physics were harmed in this process.

This Startup Claims It Can Turn Mercury Into Gold Using Fusion Energy and Scientists Are Intrigued

The age-old alchemist's dream may find new life in the heart of a fusion reactor.

Our Radar Systems Have Accidentally Turned Earth into a Giant Space Beacon for the Last 75 Years and Scientists Say Aliens Could Be Listening

If aliens have a radio telescope, they already know we exist.

Mesmerizing Fluid “Fireworks” Reveal Clues for Trapping Carbon Underground

Simulations show stunning patterns that could shape future carbon capture strategies.

Cycling Is Four Times More Efficient Than Walking. A Biomechanics Expert Explains Why

The answer lies in the elegant biomechanics of how our bodies interact with this wonderfully simple machine.

What Happens When You Throw a Paper Plane From Space? These Physicists Found Out

A simulated A4 paper plane takes a death dive from the ISS for science.

Scientists Found a Way to Turn Falling Rainwater Into Renewable Energy

It looks like plumbing but acts like a battery.