homehome Home chatchat Notifications


Supermassive black hole spin measured for first time - nears the speed of light

Astronomers have made the first accurate measurement of a supermassive black hole’s spin, providing new insights that might help scientists probe the mysteries the surround them. Supermassive black holes have an incredibly huge gravitational pull that doesn’t let anything in its surroundings escape its hungry maw, be it dust, rock or even light. Some are […]

Tibi Puiu
February 28, 2013 @ 9:29 am

share Share

Artist's impression of a spinning supermassive black hole with a surrounding accretion disk and relativistic jets. (c) NASA/JPL

Artist’s impression of a spinning supermassive black hole with a surrounding accretion disk and relativistic jets. (c) NASA/JPL

Astronomers have made the first accurate measurement of a supermassive black hole’s spin, providing new insights that might help scientists probe the mysteries the surround them.

Supermassive black holes have an incredibly huge gravitational pull that doesn’t let anything in its surroundings escape its hungry maw, be it dust, rock or even light. Some are as massive as 10 billion times the mass of the Sun; typically most galaxies have a supermassive black hole residing at their center, including own Milky Way galaxy.

“It’s the first time that we can really say that black holes are spinning,” study co-author Fiona Harrison, of Caltech in Pasadena said. “The promise that this holds for being able to understand how black holes grow is, I think, the major implication.”

Previous studies have hinted towards the idea that supermassive black holes spin very fast, but until recently no evidence has been found to support these claims. Astronomers using uSTAR‘s super-sensitive measurements of high-energy X-rays have now for the first demonstrated that supermassive black holes spin, and quite fast too.

Image of the spiral galaxy NGC 1365 was taken by the powerful HAWK-I infrared camera on ESO’s Very Large Telescope at Paranal Observatory in Chile. (c)  ESO/P. Grosbøl

Image of the spiral galaxy NGC 1365 was taken by the powerful HAWK-I infrared camera on ESO’s Very Large Telescope at Paranal Observatory in Chile. (c) ESO/P. Grosbøl

The X-ray instrument was directed to peer into the guts of the NGC 1365 galaxy, located about 56 million light-years from Earth in the constellation Fornax, where a huge black hole lies at its center. Like most supermassive black holes, it forms an accretion disk of matter around it that funnels gas and dust. The motion of this accretion disk can tracked by telescopes that analyze the  high-energy light emitted by iron atoms, emissions that are highly distorted.

“We selected (NGC 1365) because it is bright in X-rays, and previous observations with less powerful satellites suggested that this could be a good candidate for such a study,” said astronomer Guido Risaliti, of the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass., and the Italian National Institute for Astrophysics, and lead author of research published in the journal Nature.

Spinning right round

To explain this behavior, scientists have hypothesized that either the black hole is spinning very fast, or a cloud of dust lying between the telescope and the black hole is obstructing observation. Using the uSTAR telescope, launched in 2012, astronomers zeroed in on high-energy X-rays emitted by the black hole at NGC 1365 and found the purported gas clouds would have to be incredibly thick to cause these levels of distortions. So thick as to make the idea extremely unlikely. This means that the black hole’s spin the cause.

“To shine through these thick clouds, the black hole would have to be so bright it would basically blow itself apart,” Harrison said.

Based on these measurements, the astronomers assert that  this gigantic black hole is spinning at about 84% of the speed that Einstein’s general theory of relativity will allow.

“What excites me is the fact that we are able to do this for the very massive black holes at the centers of galaxies but we can also make the same measurement for black holes in our galaxy … black holes that resulted from the explosion of a star … The fact we can extend this from billions of solar masses to 10 solar masses is pretty cool,” Harrison concluded.

via Discovery News

share Share

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Scientists Used Lasers To Finally Explain How Tiny Dunes Form -- And This Might Hold Clues to Other Worlds

Decoding how sand grains move and accumulate on Earth can also help scientists understand dune formation on Mars.

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

Astronomers Claim the Big Bang May Have Taken Place Inside a Black Hole

Was the “Big Bang” a cosmic rebound? New study suggests the Universe may have started inside a giant black hole.

Astronomers Just Found the Most Powerful Cosmic Event Since the Big Bang. It's At Least 25 Times Stronger Than Any Supernova

The rare blasts outshine supernovae and reshape how we study black holes.

Terraforming Mars Might Actually Work and Scientists Now Have a Plan to Try It

Can we build an ecosystem on Mars — and should we?

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

New Simulations Suggest the Milky Way May Never Smash Into Andromeda

A new study questions previous Milky Way - Andromeda galaxy collision assumptions.