homehome Home chatchat Notifications


Smallest liquid droplets created at LHC are 100,000th the size of a hydrogen atom

Scientists closely working with the  Large Hadron Collider, the largest and most powerful particle accelerator in the world, have identified evidence of the minuscule droplets produced in the aftermath of high energy proton and lead ions collisions. If their calculations are right, then these are the smallest droplets of liquid ever encountered thus far, just three to […]

Tibi Puiu
May 20, 2013 @ 8:11 am

share Share

Scientists closely working with the  Large Hadron Collider, the largest and most powerful particle accelerator in the world, have identified evidence of the minuscule droplets produced in the aftermath of high energy proton and lead ions collisions. If their calculations are right, then these are the smallest droplets of liquid ever encountered thus far, just three to five protons in size. That’s about one-100,000th the size of a hydrogen atom or one-100,000,000th the size of a virus. WOW!

“With this discovery, we seem to be seeing the very origin of collective behavior,” said  Julia Velkovska, professor of physics at Vanderbilt who serves as a co-convener of the heavy ion program of the CMS detector, the LHC instrument that made the unexpected discovery. “Regardless of the material that we are using, collisions have to be violent enough to produce about 50 sub-atomic particles before we begin to see collective, flow-like behavior.”

A three-dimensional view of a p-Pb collision that produced collective flow behavior. The green lines are the trajectories of the sub-atomic particles produced by the collision reconstructed by the CMS tracking system. The red and blue bars represent the energy measured by the instrument's two sets of calorimeters. (CMS Collaboration)

A three-dimensional view of a p-Pb collision that produced collective flow behavior. The green lines are the trajectories of the sub-atomic particles produced by the collision reconstructed by the CMS tracking system. The red and blue bars represent the energy measured by the instrument’s two sets of calorimeters. (CMS Collaboration)

These tiny droplets “flow” in a manner similar to the behavior of the quark-gluon plasma, a state of matter that is a mixture of the sub-atomic particles that makes up protons and neutrons and only exists at extreme temperatures and densities. Some scientists claim that at the very dawn of the Universe’s existence shortly after the big bang, this primordial cosmic goo was everywhere, because of much higher temperature and density conditions.

These interactions weren’t actually targeted for observation by the LHC researchers, though. Scientists were looking to check the validity of their lead-lead results, and scheduled a proton-lead ion collision for as a simply control run – they ended up with quark-gluon plasma in the process.

“The proton-lead collisions are something like shooting a bullet through an apple while lead-lead collisions are more like smashing two apples together: A lot more energy is released in the latter,” said Velkovska.

Indeed, last September LHC researchers found that in five percent of the  protons and lead nuclei collisions —those that were the most violent – evidence of collective behavior was encountered. In turn, this allowed for the formation of   liquid droplets about one tenth the size of those produced by the lead-lead or gold-gold collisions.  The data gathered then, however, wasn’t enough to discount the influence of particle jets. New experiments in January and February of this year resulted in hundreds of cases where the collisions produced more than 300 particles flowing together.

According to doctoral student Shengquan Tuo, who recently presented the new results at a workshop held in the European Centre for Theoretical Studies in Nuclear Physics and Related Areas in Trento, Italy, only two models were advanced to explain their observations at the workshop. Of the two, the plasma droplet model seems to fit the observations best.

The new observations are contained in a paper submitted by the CMS collaboration to the journal Physics Letters B and posted on the arXiv preprint server.

[source]

share Share

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

This Wild Laser Setup Reads Tiny Letters From Over 1.3 Kilometers Away

A 1950s astronomy technique was used to read pea-sized letters over 1.3 kilometers away.

Golden Dome or Glass Ceiling? Why Physicists Say Trump's Planetary-Scale Defense System Might Never Work

Inside Trump's $175 billion plan to build a missile shield in space.

France has a new laser rifle that can melt electronics from 500 meters away

This isn’t your average battlefield weapon.

The Strongest Solar Storm Ever Was 500 Times More Powerful Than Anything We've Seen in Modern Times. It Left Its Mark in a 14,000-Year-Old Tree

The ancient event, over 500 times stronger than any modern storm, would be devastating were it to happen today.

This is absolutely the best way to crack an egg, according to science

The side of the egg is, surprisingly, more resilient. It acts like a shock absorber.