homehome Home chatchat Notifications


Smallest Swiss cross made of only 20 atoms demonstrates atom manipulation at room temp

Some applications require such a degree of precision that everything needs to be in exact order at the atom-scale. In an awesome feat of atomic manipulation,  physicists from the University of Basel,  in cooperation with team from Japan and Finland, have placed 20 atoms atop an insulated surface in the shape of a Swiss cross. Such […]

Tibi Puiu
July 17, 2014 @ 3:42 pm

share Share

Some applications require such a degree of precision that everything needs to be in exact order at the atom-scale. In an awesome feat of atomic manipulation,  physicists from the University of Basel,  in cooperation with team from Japan and Finland, have placed 20 atoms atop an insulated surface in the shape of a Swiss cross. Such experiments have been achieved with success before, but the real highlight is that this is the first time anything like this was made at room temperature.

20 bromine atoms positioned on a sodium chloride surface using the tip of an atomic force microscope at room temperature, creating a Swiss cross with the size of 5.6nm. The structure is stable at room temperature and was achieved by exchanging chlorine with bromine atoms. Photo: Department of Physics, University of Basel

20 bromine atoms positioned on a sodium chloride surface using the tip of an atomic force microscope at room temperature, creating a Swiss cross with the size of 5.6nm. The structure is stable at room temperature and was achieved by exchanging chlorine with bromine atoms. Photo: Department of Physics, University of Basel

Since the 1990s, scientists have been able to manipulate surface structures by individually moving and positioning atoms. This sort of demonstrations, however, were made mainly atop conducting or semi-conducting surfaces and only under very low temperatures. Fabricating artificial structures on fully insulated surfaces and at room temperature has always proven to be a challenge, but the international effort proved it is possible.

[RELATED] IBM develops smallest storage device: 12 atoms for a single bit!

The team led by Shigeki Kawai and Ernst Meyer from the Department of Physics at the University of Basel used an atomic force microscope to place single bromine atoms on a sodium chloride surface. Upon reacting with the surface, the bromine atoms would exchange position with chloride and the researchers carefully repeated each step until they formed a lovely Swiss cross made up of 20 such atoms. It’s so small that the surface area measures only a whooping 5.6 nanometers square. Effectively, the demonstration represents  the largest number of atomic manipulations ever achieved at room temperature.

[ALSO READ] Incredible molecular imaging shows how chemical bonds really look like for the first time

By proving atomic manipulation at this scale is achievable under room temperature, the scientists help pave the way for the next generation of electromechanical systems, advanced atomic-scale data storage devices and logic circuits that will most likely use a scaled version of their process.

The paper appeared in the journal Nature Communications.

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

The Moon Used to Be Much Closer to Earth. It's Drifting 1.5 Inches Farther From Earth Every Year and It's Slowly Making Our Days Longer

The Moon influences ocean tides – and ocean tides, in some ways, influence the Moon back.

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.