homehome Home chatchat Notifications


It used to rain so hard on Mars it shaped the planet's geology

A first of its kind study found rain on Mars was quite abundant.

Tibi Puiu
May 17, 2017 @ 3:59 pm

share Share

Mars, the fourth planet from the sun, is a desolated wasteland. But billions of years ago, it held more water than Earth’s Arctic Ocean. In other words, it was very similar to Earth in many respects, as evidenced by geological features like canyons, channels, craters, and valleys. Although it doesn’t rain at all today on Mars most of these features were carved by rainfall, according to an amazing study recently published by researchers at the Smithsonian Institution and the Johns Hopkins University Applied Physics Laboratory.

Valley networks on Mars that show evidence for surface runoff driven by rainfall. Credit: Elsevier.

Valley networks on Mars that show evidence for surface runoff driven by rainfall. Credit: Elsevier.

The team led by geologists Dr. Robert Craddock and Dr. Ralph Lorenz turned to the same vetted methods used here on Earth to determine the erosive effect of rain on the planet’s surface. By reverse engineering from the kind of geological features present today, the team was able to assess how powerful rainfall must have been across Mars’ geological history.

By using basic physical principles to understand the relationship between the atmosphere, raindrop size and rainfall intensity, we have shown that Mars would have seen some pretty big raindrops that would have been able to make more drastic changes to the surface than the earlier fog-like droplets,” commented Dr. Lorenz of John Hopkins University, who has also studied liquid methane rainfall on Saturn’s moon Titan, the only other world in the solar system apart from Earth where rain falls onto the surface at the present day.

When the researchers applied the same Earth physics to valley networks on Mars, they not only found that it used to rain on Mars — but that it was so considerable it permanently altered the planet’s surface.

“In addition to modified impact craters, valley networks, alluvial fans, and analyses of fluvial sediments at a variety of landing sites, large outflow channels, evidence for crater lakes, intracrater lakes, and a northern ocean attest to large bodies of liquid water on the surface, which is predicated by rainfall,” the authors wrote in the journal Icarus. 

Artist impression of Mars covered in a primitive ocean. Credit: NASA/GSFC.

Artist impression of Mars covered in a primitive ocean. Credit: NASA/GSFC.

The whole analysis first starts with assessing the planet’s atmosphere since it’s the main primer for rainfall. Some 4.5 billion years ago when both Mars and Earth formed, the Red Planet had a very thick atmosphere, unlike the thin veil that passes for an atmosphere today. This meant that the atmospheric pressure was very high, which in turn altered rainfall patterns. The more pressure there is, the smaller the raindrops and early on in Mars’ existence, the droplets must have been very small producing something more akin to fog than what we’d familiarly call rain.

[ALSO SEE] How it rains on different planets 

For instance, Dr. Lorenz claims early Mars had an atmospheric pressure of 4 bars or four times higher than the atmospheric pressure on Earth’s surface today. At this kind of pressure, raindrops could not have been bigger than 3mm across. For this diameter, the raindrops couldn’t penetrate the soil but once the pressure fell to 1.5 bars, the droplets could grow bigger and fall harder. Literally drop by drop, the Martian geology became altered as the raindrops cut through soil. Considering conditions at the time, had the pressure been the same as that on Earth, Martian raindrops would have been 7.3 mm across or a millimeter bigger than here on Earth.

“There will always be some unknowns, of course, such as how high a storm cloud may have risen into the Martian atmosphere, but we made efforts to apply the range of published variables for rainfall on Earth,”said Dr. Craddock in a statement. “It’s unlikely that rainfall on early Mars would have been dramatically different than what’s described in our paper. Our findings provide new, more definitive, constraints about the history of water and the climate on Mars.”

Journal reference: Robert A. Craddock, Ralph D. Lorenz. The changing nature of rainfall during the early history of Mars. Icarus, 2017; 293: 172 DOI: 10.1016/j.icarus.2017.04.013

share Share

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

A strange particle traveled across the universe and slammed into the deep sea.

Autism rates in the US just hit a record high of 1 in 31 children. Experts explain why it is happening

Autism rates show a steady increase but there is no simple explanation for a "supercomplex" reality.

A New Type of Rock Is Forming — and It's Made of Our Trash

At a beach in England, soda tabs, zippers, and plastic waste are turning into rock before our eyes.

A LiDAR Robot Might Just Be the Future of Small-Scale Agriculture

Robots usually love big, open fields — but most farms are small and chaotic.

Scientists put nanotattoos on frozen tardigrades and that could be a big deal

Tardigrades just got cooler.

This underwater eruption sent gravitational ripples to the edge of the atmosphere

The colossal Tonga eruption didn’t just shake the seas — it sent shockwaves into space.

50 years later, Vietnam’s environment still bears the scars of war – and signals a dark future for Gaza and Ukraine

When the Vietnam War finally ended on April 30, 1975, it left behind a landscape scarred with environmental damage. Vast stretches of coastal mangroves, once housing rich stocks of fish and birds, lay in ruins. Forests that had boasted hundreds of species were reduced to dried-out fragments, overgrown with invasive grasses. The term “ecocide” had […]

America’s Cornfields Could Power the Future—With Solar Panels, Not Ethanol

Small solar farms could deliver big ecological and energy benefits, researchers find.

Plants and Vegetables Can Breathe In Microplastics Through Their Leaves and It Is Already in the Food We Eat

Leaves absorb airborne microplastics, offering a new route into the food chain.

Explorers Find a Vintage Car Aboard a WWII Shipwreck—and No One Knows How It Got There

NOAA researchers—and the internet—are on the hunt to solve the mystery of how it got there.