homehome Home chatchat Notifications


Understanding a unique type of magnetism

Using low-frequency laser pulses, a team of researchers has carried out the first measurements on a mineral called herbertsmithite. This (pretty awesome looking) mineral features a unique kind of magnetism. Insite it, magnetic elements constantly fluctuate, leading to an exotic magnetic state, unlike conventional magnetism in which all magnetic forces allign in the same direction […]

Mihai Andrei
September 24, 2013 @ 11:12 am

share Share

Using low-frequency laser pulses, a team of researchers has carried out the first measurements on a mineral called herbertsmithite. This (pretty awesome looking) mineral features a unique kind of magnetism.

hebertsmithe

A sample of the mineral herbertsmithite.
PHOTO: ROB LAVINSKY/IROCKS.COM

Insite it, magnetic elements constantly fluctuate, leading to an exotic magnetic state, unlike conventional magnetism in which all magnetic forces allign in the same direction and also unlike antiferromagnets, where adjacent magnetic elements align in opposite directions, practically nullifying the material’s magnetic field.

A joint team from MIT, Boston College and Harvard University has successfully carried out these measurements, revealing a signature in the optical conductivity of the spin-liquid state that reflects the influence of magnetism on the motion of electrons; the quantum spin liquid is a state that can be achieved in a system of interacting quantum spins – the term “liquid” simply refers to a disordered state of matter. This supports a number of theoretical predictions which had been made. Nuh Gedik, the Biedenharn Career Development Associate Professor of Physics at MIT and lead author of the study was thrilled:

“We think this is good evidence,” Gedik says, “and it can help to settle what has been a pretty big debate in spin-liquid research.”

Another sample, via Wikipedia.

Another sample, via Wikipedia.

Daniel Pilon, a graduate student also at MIT was also happy to be part of the first experiment which tackles this unique type of magnetism:

“Theorists have provided a number of theories on how a spin-liquid state could be formed in herbertsmithite,” Pilon explains. “But to date there has been no experiment that directly distinguishes among them. We believe that our experiment has provided the first direct evidence for the realization of one of these theoretical models in herbertsmithite.”

 

Quantum spin liquids such as this one have been proposed all the way back in 1973, but up until a few years, this was only considered to be a theoretical state. It took almost 40 years to actually discover this mineral which exhibits such a state.

These exciting discoveries will remain in the lab for now, as no forseeable direct advantage ca be drawn from this state. Still, these are only the first steps in what is a thrilling new field.

Gedik says, “Although it is hard to predict any potential applications at this stage, basic research on this unusual phase of matter could help us to solve some very complicated problems in physics, particularly high-temperature superconductivity, which might eventually lead to important applications.” In addition, Pilon says, “This work might also be useful for the development of quantum computing.”

share Share

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

This Wild Laser Setup Reads Tiny Letters From Over 1.3 Kilometers Away

A 1950s astronomy technique was used to read pea-sized letters over 1.3 kilometers away.

Golden Dome or Glass Ceiling? Why Physicists Say Trump's Planetary-Scale Defense System Might Never Work

Inside Trump's $175 billion plan to build a missile shield in space.

France has a new laser rifle that can melt electronics from 500 meters away

This isn’t your average battlefield weapon.

The Strongest Solar Storm Ever Was 500 Times More Powerful Than Anything We've Seen in Modern Times. It Left Its Mark in a 14,000-Year-Old Tree

The ancient event, over 500 times stronger than any modern storm, would be devastating were it to happen today.

This is absolutely the best way to crack an egg, according to science

The side of the egg is, surprisingly, more resilient. It acts like a shock absorber.