homehome Home chatchat Notifications


Quantum entanglement experiment aboard ISS tests it over longest distance yet

One of the most mysterious, and weirdest at the same time, phenomenae in quantum physics is quantum entanglement, in which two connected particles can share information instantly despite being separated, no matter the distance. Two particles, or so the theory holds, could be parted by light years in distance and still reflect each others’ stances instantly, […]

Tibi Puiu
April 9, 2013 @ 5:19 pm

share Share

Artist's conception shows the International Space Station in the midst of an experiment in quantum entanglement. CREDIT: ESA

Artist’s conception shows the International Space Station in the midst of an experiment in quantum entanglement.
CREDIT: ESA

One of the most mysterious, and weirdest at the same time, phenomenae in quantum physics is quantum entanglement, in which two connected particles can share information instantly despite being separated, no matter the distance. Two particles, or so the theory holds, could be parted by light years in distance and still reflect each others’ stances instantly, an oddity which prompted Einstein himself to refer to quantum entanglement as “spooky action at a distance.” Now, a group of physicists have proposed to set up an experiment aboard the International Space Station that would test quantum entanglement over the longest yet.

So far this weird display of quantum physics has only been tested in labs over relatively short distances. A while ago, ZME Science reported  how scientists used quantum entanglement to ferry photons – particles of light – over a distance of 143 kilometers, across two Canary islands. As explained in a proposal published by the Institute of Physics and the New Physics Journal, physicists now intend to triple the distance by devising an experiment on the ISS, which orbits about 400 kilometers above the planet.

“According to quantum physics, entanglement is independent of distance,” physicist Rupert Ursin of the Austrian Academy of Sciences said in a statement. “Our proposed Bell-type experiment will show that particles are entangled, over large distances — around 500 km — for the very first time in an experiment.”

Maybe you’re a bit confused by now. My recommendation is you check this youtube video embedded below for a rough, but effective explanation of this peculiar quantum effect.

The researchers suggest deploying a photon detection module to the International Space Station, where it could be attached to an existing motorized Nikon 400 mm camera lens, which observes the ground from the space station’s panoramic Cupola window. Once this setup is complete, scientists on the ground will entangle pairs of photons and send individual entangled photons to the orbiting experiment. If indeed the photon pairs are entangled, then a change to the properties of one of the particles, say that on ground, will immediately mandate the same change in its pair.

“Our experiments will also enable us to test potential effects gravity may have on quantum entanglement,” Ursin said.

If the experiment proves to be successful, then the ISS could be turned into a sort of quantum entanglement relay point in order to send a secret encryption key far above the planet’s surface, forming the basis for a worldwide quantum network. In theory, information encrypted with quantum entangled keys are unbreakable, so you can imagine the benefits and interests.

share Share

Want to make the perfect pasta? Physics finally has the answer

Cacio e pepe has just three ingredients, but mastering it is harder than it looks.

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

A strange particle traveled across the universe and slammed into the deep sea.

This underwater eruption sent gravitational ripples to the edge of the atmosphere

The colossal Tonga eruption didn’t just shake the seas — it sent shockwaves into space.

NASA’s Curiosity Rover Spotted Driving Across Mars From Space for the First Time

An orbiter captured Curiosity mid-drive on the Red Planet.

New Quantum Navigation System Promises a Backup to GPS — and It’s 50 Times More Accurate

An Australian startup’s device uses Earth's magnetic field to navigate with quantum precision.

Japan Plans to Beam Solar Power from Space to Earth

The Sun never sets in space — and Japan has found a way to harness this unlimited energy.

Giant Planet Was Just Caught Falling Into Its Star and It Changes What We Thought About Planetary Death

A rare cosmic crime reveals a planet’s slow-motion death spiral into its star.

Japanese Scientists Just Summoned Lightning with a Drone. Here’s Why

The drone is essentially a mobile, customizable, lightning rod.

This Planet Is So Close to Its Star It Is Literally Falling Apart, Leaving a Comet-like Tail of Dust in Space

This dying planet sheds a “Mount Everest” of rock each day.

We Could One Day Power a Galactic Civilization with Spinning Black Holes

Could future civilizations plug into the spin of space-time itself?