homehome Home chatchat Notifications


Scientists manage to keep proteins 'alive' outside cells

The discovery paves the way for advanced materials that have the same functionality as living organisms.

Alexandru Micu
August 8, 2018 @ 4:01 pm

share Share

Researchers from the US have developed a method that allows them to keep proteins ‘alive’ outside of cells. The discovery paves the way for advanced materials that have the same functionality as living organisms — for example, mats that scrub air clean of chemical pollution.

Fiber mat.

Image credits Christopher DelRe, Charley Huang/UC Berkeley

Proteins don’t much like living outside of cells. We know this because researchers have been trying to get proteins stable in other environments for years now, but with very limited success. Efforts to combine these proteins with synthetic materials and still keep them functional for any length of time met a similar fate.

A new paper, however, details a method that can be used to keep these proteins active in synthetic environments, finally allowing researchers to cash in on their activity on demand.

Problems

Proteins are the heavy lifters of biochemistry. Quite literally — its constricting proteins that make your muscles, and by extension, you, move. But take them outside of the cozy place we call ‘the body’ and they fall apart quite easily. Even if they somehow survive, it doesn’t mean they will actually be doing anything. One of their most significant limitations is that proteins need to be folded just right for them to work; often, this means other proteins have to come in and do the folding.

In order to work around that problem, the team analyzed protein sequences, folding patterns, and various surfaces to see if they could develop a polymer that would cater to the proteins’ needs — to keep their structures unaltered, and thus maintain function.

“Proteins have very well-defined statistical pattern, so if you can mimic that pattern, then you can marry the synthetic and natural systems, which allows us to make these materials,” says first author Brian Panganiban.

The next step was to create random heteropolymers, or RHPs. Thpotentey’re basically the same things as a polymer (plastics), but instead of using a single type of ‘brick’ (molecules known as monomers), they use two or more different, but similar monomers. The RHPs the team developed used four types or monomers, with each being tailored to chemically interact with spots of interest along the proteins. The monomers were connected in such a way as to mimic the structure of natural proteins to help these interactions flow smoothly.

Researchers at Northwestern University simulated the molecule and its interaction with proteins of interest and determined that the material led to correct protein folding and would maintain protein stability outside living cells.

Filter me this

So far so good, but the team wanted to go beyond simulations and test their results in real life. They decided to use the RHPs and proteins to construct bioremediation filters. The protein they chose for the job was organophosphorus hydrolase (OPH), which degrades toxic organic-phosphate compounds, such as those found in insecticides or chemical warfare agents.

They spun the RHP/OPH into fiber mats and submersed them in insecticide. The mats degraded an amount of insecticide weighing approximately one-tenth of the mat’s weight in just a few minutes. The team says the mats are easily scalable and can be customized with different proteins meaning their technology could be used for a wide range of applications. In fact, at least part of the funding for this research came from the US Department of Defense — the mats can be used to soak up chemical weapons in war zones, to scrub contaminated areas, even as on-demand, handheld filters.

“We think we’ve cracked the code for interfacing natural and synthetic systems,” says co-author Ting Xu, a professor at the University of California, Berkeley.

Despite the interest shown by military planners, the mats show great potential in the bioremediation of areas polluted with chemical contamination events. Because RHPs can be customized with a wide range of proteins — which means a wide range of substances they can interact with, and several ways to do so — Xu’s team believes their work could form the basis for portable chemistry labs of the future, a fast response team for potential environmental contamination events.

The paper “Random heteropolymers preserve protein function in foreign environments” has been published in the journal Science.

share Share

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Want to make the perfect pasta? Physics finally has the answer

Cacio e pepe has just three ingredients, but mastering it is harder than it looks.

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

A strange particle traveled across the universe and slammed into the deep sea.

A New Type of Rock Is Forming — and It's Made of Our Trash

At a beach in England, soda tabs, zippers, and plastic waste are turning into rock before our eyes.

Scientists put nanotattoos on frozen tardigrades and that could be a big deal

Tardigrades just got cooler.

This underwater eruption sent gravitational ripples to the edge of the atmosphere

The colossal Tonga eruption didn’t just shake the seas — it sent shockwaves into space.

New Quantum Navigation System Promises a Backup to GPS — and It’s 50 Times More Accurate

An Australian startup’s device uses Earth's magnetic field to navigate with quantum precision.

Scientists Rediscover a Lost Piece of Female Anatomy That May Play a Crucial Role in Fertility

Scientists reexamine a forgotten structure near the ovary and discover surprising functions

This Tiny 3D Printed Material is as Strong as Steel but as Light as Styrofoam

When 3D printing is combined with machine learning, magic happens at the nano scale.