homehome Home chatchat Notifications


Scientists answer longstanding question: why is the surface of ice wet?

Some simple questions have deceivingly complicated answers.

Mihai Andrei
November 28, 2016 @ 3:07 pm

share Share

Some simple questions have deceivingly complicated answers.

Figures illustrating the process in which a QLL, a thin layer of water on ice, transforms to a state of partial wetting. At the start (0.00 seconds), the surface of the ice is completely covered by the QLL. After six seconds, the layer has turned into droplets (Scale bar: 10 ?m).
Credit: Murata K. et al., PNAS, October 17, 2016

If you’ve ever touched ice, then you know the surface is wet. Even when the temperature is well below the freezing point, the outer layers of ice are still wet, as if they were melting. So how can this be?

The mystery has puzzled scientists for over 150 years, when Michael Faraday mentioned it as a strange phenomenon. Now, a team of Hokkaido University scientists might have figured out the answer. They believe the key is something called quasi-liquid layers, or QLLs.

Thin liquid water layers, QLLs, exist on ice surfaces just below the melting point (0 °C) but they are unable to form in perfect equilibrium, researchers found. QLLs have attracted significant scientific interest as their formation governs various important phenomena on Earth, such as weather and environment-related issues, winter sports, etc. In their search to explain how these layers form, researchers developed and used a special microscope with Olympus.

“Our results contradict the conventional understanding that supports QLL formation at equilibrium,” says Ken-ichiro Murata, the study’s lead author at Hokkaido University. “However, comparing the energy states between wet surfaces and dry surfaces, it is a corollary consequence that QLLs cannot be maintained at equilibrium. Surface melting plays important roles in various phenomena such as the lubrication on ice, formation of an ozone hole, and generation of electricity in thunderclouds, of which our findings may contribute towards the understanding.”

Their research also revealed an intriguing phenomenon: QLLs are absent at equilibrium, they only form when the surface of ice is growing or sublimating, under supersaturated or unsaturated vapor conditions. In the end, a model was also proposed to explain how these layers form, contributing to our understanding of other crystalline surfaces, too.

“We propose a simple but general physical model that consistently explains these aspects of surface melting and QLLs. Our model shows that a unique interfacial potential solely controls both the wetting and thermodynamic behavior of QLLs.”

Journal Reference: Ken-ichiro Murata, Harutoshi Asakawa, Ken Nagashima, Yoshinori Furukawa, Gen Sazaki. Thermodynamic origin of surface melting on ice crystals. Proceedings of the National Academy of Sciences, 2016; 113 (44): E6741 DOI: 10.1073/pnas.1608888113

share Share

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

Want to make the perfect pasta? Physics finally has the answer

Cacio e pepe has just three ingredients, but mastering it is harder than it looks.