homehome Home chatchat Notifications


Physicists measure quantum entanglement in chemical reactions

The discovery has implications for the improvement of technologies like solar energy systems.

Rob Lea
August 3, 2019 @ 6:32 pm

share Share

Quantum entanglement and other quantum phenomena have long been suspected by scientists to play a role in chemical reactions like photosynthesis. But, until now, their presence has been hard to identify.

Purdue researchers have modified a popular theorem for identifying quantum entanglement and applied it to chemical reactions. This quantum simulation of a chemical reaction yielding deuterium hydride validated the new method. ( Purdue University image/Junxu Li)

Purdue researchers have modified a popular theorem for identifying quantum entanglement and applied it to chemical reactions. This quantum simulation of a chemical reaction yielding deuterium hydride validated the new method. ( Purdue University image/Junxu Li)

Researchers at Purdue University have unveiled a new method that enables them to measure entanglement — the correlation between the properties of two separated particles — in chemical reactions.

Discovering just what role entanglement play in chemical reactions has implications for the improvement of technologies like solar energy systems if we can learn to replicate them.

The study — published in the journal Science Advances — takes the theorem ‘Bell’s Inequality’ and generalises it to identify entanglement in chemical reactions. In addition to theoretical arguments, they also performed a series of quantum simulations to verify this generalized inequality.

Sabre Kais, a professor of chemistry at Purdue, explains further: “No one has experimentally shown entanglement in chemical reactions yet because we haven’t had a way to measure it. For the first time, we have a practical way to measure it.

“The question now is, can we use entanglement to our advantage to predict and control the outcome of chemical reactions?”

Bell’s Inequality — identifying entanglement.

John S. Bell designed an experiment to prove if quantum mechanics is complete (CERN)

John S. Bell designed an experiment to prove if quantum mechanics is complete (CERN)

Since its development in 1964, Bell’s Inequality has been validated as the go-to test that physicists use to identify entanglement in particles. The theorem uses discrete measurements of properties of particles such as the orientation in their spin — nothing to do with angular momentum in the quantum world — to find if the particles are correlated.

The problem is, discovering entanglement in chemical reactions requires that measurements are continuous. This means measuring aspects such as the angles of beams which scatter reactants forcing them into contact and transform into products.

To combat this, Kai’s team generalised Bell’s Inequality to include continuous measurements in chemical reactions, in a similar way to how the theorem had previously been generalised to examine light — photonic systems.

The team then tested their generalised Bell’s inequality using a quantum simulation of a chemical reaction yielding the molecule deuterium hydride.

The process was built on a foundation established in a 2018 experiment developed by Stanford University researchers that aimed to study the quantum states of molecular interactions.

Because the simulations validated the Bells’s theorem and showed that entanglement can be classified in chemical reactions, Kais’ team proposes to further test the method on deuterium hydride in an experiment.

Kais says: “We don’t yet know what outputs we can control by taking advantage of entanglement in a chemical reaction — just that these outputs will be different.

 “Making entanglement measurable in these systems is an important first step.”

share Share

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

Big Tech Said It Was Impossible to Create an AI Based on Ethically Sourced Data. These Researchers Proved Them Wrong

A massive AI breakthrough built entirely on public domain and open-licensed data

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

Lawyers are already citing fake, AI-generated cases and it's becoming a problem

Just in case you're wondering how society is dealing with AI.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Leading AI models sometimes refuse to shut down when ordered

Models trained to solve problems are now learning to survive—even if we tell them not to.

AI slop is way more common than you think. Here's what we know

The odds are you've seen it too.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

Scientists Invented a Way to Store Data in Plastic Molecules and It Could Someday Replace Hard Drives

What if your next hard drive wasn’t a box, but a string of molecules? Synthetic polymers promises to revolutionize data storage.