homehome Home chatchat Notifications


Physicists discover rare hypernucleus, a component of strange matter

It looks like not all is going bad for Italian researchers, after the trial of the seismologists: physicists from Italy have discovered the first evidence of a nucleus that doesn’t exist in nature and survives only for 10-10 seconds when created in a laboratory. Strange matter Hypernuclei contain all sorts of protons and neutrons, but […]

Mihai Andrei
February 20, 2012 @ 12:50 pm

share Share

It looks like not all is going bad for Italian researchers, after the trial of the seismologists: physicists from Italy have discovered the first evidence of a nucleus that doesn’t exist in nature and survives only for 10-10 seconds when created in a laboratory.

Strange matter

Hypernuclei contain all sorts of protons and neutrons, but unlike regular nuclei, they also contain at least a hyperon, a particle that consists of three quarks, including at least one strange quark; hypernuclei are considered to be the core of strange matter that may exist in distant parts of the universe and could prove valuable to researchers in understanding this phenomena. Whoa! Wait a minute, strange matter?

Let’s start from the beginning. You’ve probably learned in school that the world we see around us is built from ‘atoms’ – the building blocks of the Universe – which themselves consist of protons, neutrons and electrons. But scientists love to dig more and ask more questions, so they found other fundamental particles which build these particles. Among these smallest particles (that we know of at the moment, at least) are quarks, which go together and build neutrons and protons. Strange quarks are just a type of quarks, named so because, well, scientists have a sense of humor. Which gets us to our point: strange matter is a type of quark matter, usually thought of as a “liquid” of up, down, and strange quarks.

Hydrogen six Lambda

The particular hypernucleus analyzed here was called “hydrogen six Lambda” (6ΛH), and it was first predicted to exist in 1963. Now, researchers from the FINUDA experiment at the Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali di Frascati (INFN-LNF) in Frascati, Italy have reported the first ever ‘sighting’ of such a phenomena, in a study published in the recent issue of Physical Review Letters.

As the name suggest, the atom is a species of Hydrogen which consists of six particles: four neutrons, one proton, and one Lambda (Λ) hyperon. Since the Hydrogen atom has only one proton and no neutrons, other species which do have neutrons are called ‘heavy hydrogen’, like deuterium (one neutron) and tritium (two neutrons). Since 6ΛH has four neutrons plus a L hyperon, physicists refer to it as “heavy hyperhydrogen.” The hyperon is practically a composite particle which contains one strange quark.

Without the L hyperon, it would practically be impossible to observe the Hydrogen atom with four neutrons, because it increases its lifetime from 10-22 seconds to 10-10 seconds.

The FINUDA experiment

The findings could shed light on strange matter, which many researchers believe to exist at the core of ultra-dense neutron stars. They can also serve as good tools to measure the current atomic model.

“The fact that a hypernucleus has a strange quark does give it interesting characteristics compared to normal nuclei, since it allows the component L particle to act as a probe that can go very deep into the nucleus to test the description that the single particle shell model gives of nuclear matter,” Botta said. “In this respect, the study of hypernuclear physics allows us to get information not directly accessible otherwise.”

Via Physorg

share Share

Want to make the perfect pasta? Physics finally has the answer

Cacio e pepe has just three ingredients, but mastering it is harder than it looks.

The Fat Around Your Thighs Might Be Affecting Your Mental Health

New research finds that where fat is stored—not just how much you have—might shape your mood.

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

A strange particle traveled across the universe and slammed into the deep sea.

This underwater eruption sent gravitational ripples to the edge of the atmosphere

The colossal Tonga eruption didn’t just shake the seas — it sent shockwaves into space.

New Quantum Navigation System Promises a Backup to GPS — and It’s 50 Times More Accurate

An Australian startup’s device uses Earth's magnetic field to navigate with quantum precision.

Japan Plans to Beam Solar Power from Space to Earth

The Sun never sets in space — and Japan has found a way to harness this unlimited energy.

Japanese Scientists Just Summoned Lightning with a Drone. Here’s Why

The drone is essentially a mobile, customizable, lightning rod.

Packed Festival Crowds Actually Form Living Vortices -- And You Can Predict Them with Physics

The physics of crows explains why they sometimes move like waves.

Scientists Found a Way to Turn Falling Rainwater Into Electricity

It looks like plumbing but acts like a battery.

Could This Saliva Test Catch Deadly Prostate Cancer Early?

Researchers say new genetic test detects aggressive cancers that PSA and MRIs often miss