homehome Home chatchat Notifications


Part of Earth's mantle is shown to be conductive under high pressures and temperatures

Ever since researchers started studying the Earth’s spin, they noticed that the spin isn’t perfect. Many believe this is a result of the different elements in the Earth’s core, mantle and crust, which have different densities and generate different friction. Most researchers studying this wobble agreed that the mantle would have to respond to the […]

Mihai Andrei
January 20, 2012 @ 2:49 pm

share Share

Ever since researchers started studying the Earth’s spin, they noticed that the spin isn’t perfect. Many believe this is a result of the different elements in the Earth’s core, mantle and crust, which have different densities and generate different friction.

Most researchers studying this wobble agreed that the mantle would have to respond to the magnetic tug of the core – but the problem here is that the mantle is made out of rocks, and not only metals, like the core, and therefore shouldn’t be conductive; hence, quite a predicament. However, new research done by Kenji Ohta and his colleagues at Osaka University in Japan.

As they describe in their paper published in Physical Review Letters, it appears that a mineral called Wustite (FeO), believed to be a significant component of the Earth’s mantle, can be made to conduct electricity at high temperatures and pressures.

In order to test their theory, they raised the mineral up to 1600°C and applying 70 gigapascals of pressure, and they found it becomes just as conductive as an average metal. To find out what happens in even harsher conditions, they heated the mineral to 2200°C and doubled the pressure – finding the same results, suggesting that the same thing would happen even deeper in the mantle, closer to the core-mantle boundary.

In order to better understand why this particular mixture of Oxygen and iron becomes conductive at high pressures, the team did density and electrical conductivity tests and their results seem to suggest that this metallization is related to the spin crossover.

share Share

When Ice Gets Bent, It Sparks: A Surprising Source of Electricity in Nature’s Coldest Corners

Ice isn't as passive as it looks.

Scientists Finally Prove Dust Helps Clouds Freeze and It Could Change Climate Models

New analysis links desert dust to cloud freezing, with big implications for weather and climate models.

Mars Seems to Have a Hot, Solid Core and That's Surprisingly Earth-Like

Using a unique approach to observing marsquakes, researchers propose a structure for Mars' core.

Scientists Just Discovered a Massive Source of Drinking Water Hiding Beneath the Atlantic Ocean

Scientists drill off Cape Cod and uncover vast undersea aquifers that may reshape our water future.

World's Oldest Water is 1.6 billion Years Old -- and This Scientist Tasted It

Apparently, it tastes 'very salty and bitter'.

Scientists Uncover 505-Million-Year-Old Penis Worm with a Mouthful of Bizarre Teeth

Evolution was trying things out.

Scientists May Have Found a New Mineral on Mars. It Hints The Red Planet Stayed Warm Longer

Scientists trace an enigmatic infrared band to heated, oxygen-altered sulfates.

A Comet That Exploded Over Earth 12,800 Years Ago May Have Triggered Centuries of Bitter Cold

Comet fragments may have sparked Earth’s mysterious 1,400-year cold spell.

This Unbelievable Take on the Double Slit Experiment Just Proved Einstein Wrong Again

MIT experiment shows even minimal disturbance erases light’s wave pattern, proving Einstein wrong

Meet the world's rarest mineral. It was found only once

A single gemstone from Myanmar holds the title of Earth's rarest mineral.