homehome Home chatchat Notifications


Oceans soak less carbon due to global warming

Since the mid-XIXth century average global temperatures have risen by ~0.8 degrees Centigrade, yet this figure would have been much higher were it not for the world’s oceans ability to soak up most of the heat trapped by greenhouse gases. The IPCC estimates that some 90% of the heat trapped by CO2 and methane since […]

Tibi Puiu
January 7, 2015 @ 11:18 am

share Share

Since the mid-XIXth century average global temperatures have risen by ~0.8 degrees Centigrade, yet this figure would have been much higher were it not for the world’s oceans ability to soak up most of the heat trapped by greenhouse gases. The IPCC estimates that some 90% of the heat trapped by CO2 and methane since the 1970s has been absorbed by the world’s oceans and converted into organic carbon, sinking to the floor where it stays trapped for hundreds of years. However, the carbon sinking waters aren’t going to save us forever. A new study published by researchers at University of Southampton found that less organic compounds are transported because the waters are warmer. As the oceans warm even further because of man-made global warming their ability to soak carbon diminishes further, thus creating a feedback loop.

An overused sponge

ocean carbon cycle

The ocean carbon cycle. Credit: Grid Arendal

Its not the water itself that soaks the carbon, but the tiny marine creatures known as phytoplankton which use it along with sunlight captured from the surface to photosynthesize, just like plants do. Through this process, the carbon dioxide is transformed into organic carbon compounds that rest in the phytoplankton. Through sinking particulate matter, largely from zooplankton feces and aggregates of algae, the organic carbon from the upper part of the ocean is transferred into the deeper layers below. This process is called a “biological pump”.

The color of ocean waters is an indicator of the type of phytoplankton biomass and its composition. For example – green ocean water means the particular area probably contains a lot of phytoplankton. Blue water could mean that portion of the ocean has less phytoplankton. This insight is used to make large scale assessments of biological pump efficiency using satellite imagery, even on a global level.

The UK researchers, however, used a more refined method to gauge the biological pump. Sediment traps called Pelagra were employed, which  consist of a funnel or cylinder that is held vertically in the water, with the top end open to catch material sinking through the water column and a sample cup connected to the bottom end to store the material for analysis, according to Dr Chris Marsay, who led the study. These are much better than traditional traps because they can be used to collect samples from variable depths, not just the ocean surface or floor.

Several traps were placed at various depths up to 700 meters below the Atlantic Ocean’s surface. These samples were combined with results obtained by a similar study made earlier in the Pacific.

The ratio of sinking carbon to dissolved carbon, plotted against temperature. The circles and triangles show results from the Atlantic and Pacific Oceans (respectively) and are labelled with the name given to each measurement site. The equation of the trend line is given in the top right-hand corner, along with the correlation coefficient (r2) and p-value (which shows the relationship is statistically significant). Source: Marsay et al.

 

Where the water was warmer, the amount of collected organic carbon was lower. This suggests that in warmer waters, phytoplankton and other organisms are more likely to dissolve in the upper ocean before they sink. When this happens, the carbon is then re-emitted back into the atmosphere, compromising the carbon sink as relayed in a paper published in Proceedings of the National Academy of Sciences.

“This would potentially result in reduced storage of carbon dioxide by the oceans, effectively acting as a positive feedback mechanism, with less atmospheric carbon dioxide being removed by the oceans,” Marsay says.

This isn’t the first study to show that ocean carbon sinks are less potent. A study published in Nature in 2009 was the first to quantify the perceived trend that oceans are becoming less efficient carbon sinks. The findings showed that oceans have absorbed a smaller proportion of fossil-fuel emissions, nearly 10 percent less, since 2000.

via Carbon Brief

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.