homehome Home chatchat Notifications


New technique bypasses Heisenberg's Uncertainty Principle

A group of researchers at University of Rochester and the University of Ottawa have found a way to bypass Heisenberg’s famous Uncertainty Principle, and measure key quantum properties directly for the first time like the polarization states of light. The technique might provide valuable in encoding qubits, the building blocks of quantum information theory. Heisenberg’s Uncertainty Principle […]

Tibi Puiu
March 4, 2013 @ 8:27 am

share Share

As light goes through a birefringent crystal the horizontally and vertically polarized components of light spread out in space, but an overlap between the two components remains when they emerge. In a “strong” measurement the two components would be fully separated. (c) Jonathan Leach

As light goes through a birefringent crystal the horizontally and vertically polarized components of light spread out in space, but an overlap between the two components remains when they emerge. In a “strong” measurement the two components would be fully separated. (c) Jonathan Leach

A group of researchers at University of Rochester and the University of Ottawa have found a way to bypass Heisenberg’s famous Uncertainty Principle, and measure key quantum properties directly for the first time like the polarization states of light. The technique might provide valuable in encoding qubits, the building blocks of quantum information theory.

Heisenberg’s Uncertainty Principle states that when certain properties of a quantum system are known precisely, others are known poorly. This is why a lot of scientists were until recently led to believe that fully understanding a quantum system is impossible.

The researchers challenge this idea, after they developed a nifty technique that relies on a “trick” to measure the first property of a system, leaving the remaining parties untouched, bypassing the uncertainty principle in the process. Developed in 2011, the technique allowed the researchers to directly measure the polarization states of light – the directions in which the electric and magnetic fields of the light oscillate. This proves that key variables, known as “conjugate” variables, of a quantum particle or state can be measured directly, contrary to popular belief.

“The ability to perform direct measurement of the quantum wavefunction has important future implications for quantum information science,” explained  Robert Boyd, Canada Excellence Research Chair in Quantum Nonlinear Optics at the University of Ottawa and Professor of Optics and Physics at the University of Rochester. “Ongoing work in our group involves applying this technique to other systems, for example, measuring the form of a “mixed” (as opposed to a pure) quantum state.”

To measure the polarization states of light, the researchers performed “weak measurements” of the first property, and “strong measurements” of the second property in order to not disturb the quantum system. To this end, the scientists employed variable thickness birefringent crystals. In their experiments, Boyd and colleagues passed polarized light through two crystals of differing thicknesses: the first, a very thin crystal that “weakly” measures the horizontal and vertical polarization state; the second a much thicker crystal that “strongly” measures the diagonal and anti-diagonal polarization state. Since the first measurement didn’t disturb the system, the second reading was also viable.

Previously, scientists had managed to determine quantum states indirectly using a technique called quantum tomography. However, this entails a number of hassles like complex post-processing computations that require a significant amount of time to complete. This latest direct measurement technique renders the same results, with much less time required. The new technique could play a major role in the future of quantum computers.

“These results are the first direct measurements that are applicable to qubits — the fundamental unit of quantum information,” the authors write.

The findings were reported in a paper published in the journal Nature Photonics.

share Share

After 100 years, physicists still don't agree what quantum physics actually means

Does God play dice with the universe? Well, depends who you ask.

Physicists Make First Qubit out of Antimatter and It Could One Day Explain Why the Universe Exists At All

Antimatter was held in a qubit state for nearly a minute.

Scientists Superheated Gold to 14 Times Its Melting Point and It Remained Solid

No laws of physics were harmed in this process.

This Startup Claims It Can Turn Mercury Into Gold Using Fusion Energy and Scientists Are Intrigued

The age-old alchemist's dream may find new life in the heart of a fusion reactor.

Our Radar Systems Have Accidentally Turned Earth into a Giant Space Beacon for the Last 75 Years and Scientists Say Aliens Could Be Listening

If aliens have a radio telescope, they already know we exist.

Mesmerizing Fluid “Fireworks” Reveal Clues for Trapping Carbon Underground

Simulations show stunning patterns that could shape future carbon capture strategies.

Cycling Is Four Times More Efficient Than Walking. A Biomechanics Expert Explains Why

The answer lies in the elegant biomechanics of how our bodies interact with this wonderfully simple machine.

What Happens When You Throw a Paper Plane From Space? These Physicists Found Out

A simulated A4 paper plane takes a death dive from the ISS for science.

Scientists Found a Way to Turn Falling Rainwater Into Renewable Energy

It looks like plumbing but acts like a battery.

Scientists Are Building a Quantum Computer With Chips Made out of Glass

European researchers are developing quantum computers using light and glass, in a collaboration that promises breakthroughs in computing power, battery technology and scientific discovery.