homehome Home chatchat Notifications


New, more precise method to measure exoplanet mass

In the past two decades alone, some 900 exoplanets – planets outside our solar system – have been identified, with some 2300 more in queue. Most of these were confirmed using the now discontinued Kepler space telescope. It’s remarkable how much scientists can find out about a distant plant, hundreds of light years away, simply […]

Tibi Puiu
December 20, 2013 @ 8:15 am

share Share

In the past two decades alone, some 900 exoplanets – planets outside our solar system – have been identified, with some 2300 more in queue. Most of these were confirmed using the now discontinued Kepler space telescope. It’s remarkable how much scientists can find out about a distant plant, hundreds of light years away, simply by studying how light emitted by its parent star is manipulated (absorbed, reflected, tugged). For instance, researchers can establish properties like mass, planet and atmosphere composition, surface temperature and more.

As one can imagine, these readings are far from being extremely accurate. A team of researchers at MIT recently made a significant contribution to exoplanet hunting after they demonstrated a new method for assessing exoplanet mass, which they claim should be more accurate. The method is particularly useful for establishing the mass of smaller planets orbiting dimmer stars, something that currently renders skewed results using other methods. Having an accurate reading of a planet’s mass is extremely important since mass influences all the other parameters used to characterize a planet.

“The reason is that the mass of a planet is connected to its internal and atmospheric structure and it affects its cooling, its plate tectonics, magnetic field generation, outgassing, and atmospheric escape,” IT graduate student Julien de Wit said. “Understanding a planet is like dealing with a huge puzzle where knowing the mass is one of the corner pieces, which you really need to get started.”

A new way to measure mass

Artist impression of HD 189733 b and its parent star. Photo: ESA, NASA, M. Kornmesser (ESA/Hubble), and STScI

Artist impression of HD 189733 b and its parent star. Photo: ESA, NASA, M. Kornmesser (ESA/Hubble), and STScI

Typically, the mass of a planet is calculated by studying radial velocity or a measure of how intensely a planets pulls on its star. This method is useful for establishing how many planets orbit a certain star and how large these are, however it’s only accurate in certain conditions, namely for massive planets orbiting around bright star.

The method developed by de Wit and colleagues at MIT, alled MassSpec, employs transmission spectroscopy instead. This works by measuring light from a star passing through an exoplanet’s atmosphere. A key property called pressure-scale height – how quickly the atmospheric pressure changes with altitude – is established. Then, using this data the MIT researchers can determine the planet’s gravity and, in term, mass.

A hellish world

To test the accuracy of the method, the MIT researchers looked at a gas giant HD 189733 b – a huge, Jupiter-like planet in terms of composition which orbits its parent star in only 2.2-days – previously analyzed using conventional methods. Since its a massive planet around a very bright star, measuring the exoplanet’s properties is relatively easy and accurate. After comparing the data coming from the MIT method with those from conventional methods, the results were found to be consisting.

Following the 2018 deployment of the James Webb Telescope, a multi-billion project, much powerful than Kepler, that will peer through dim and small stars, like those classed as M dwarf stars, the MIT method is sure to become truly useful. Considering there are billions of planets in the Milky Way, a new age of astronomic breakthroughs and discoveries may come out.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.