homehome Home chatchat Notifications


Five new isotopes discovered at Lawrence Livermore

eam at Lawrence Livermore, helped by researchers from all around the world, announced the discovery of five new isotopes, adding to the already extensive list of 3,000 isotopes of 114 confirmed chemical elements. The exotic atomic variations discovered are one isotope each of heavy elements berkelium, neptunium and uranium and two isotopes of the element americium.

Tibi Puiu
October 28, 2015 @ 1:16 pm

share Share

A team at Lawrence Livermore, helped by researchers from all around the world, announced the discovery of five new isotopes, adding to the already extensive list of 3,000 isotopes of 114 confirmed chemical elements. The exotic atomic variations discovered are one isotope each of heavy elements berkelium, neptunium and uranium and two isotopes of the element americium.

The  five newly discovered isotopes: U 218, Np 219, Bk 233, Am 223 and Am 229.

The five newly discovered isotopes: U 218, Np 219, Bk 233, Am 223 and Am 229.

Atoms in a chemical element that have different numbers of neutrons than protons and electrons are called isotopes. Remember ions? Those are variations of atoms with missing or extra electrons. Isotopes are similar, only varying in neutrons – it’s still the same element. Take carbon, for instance. The most stable carbon in the Universe is C-12, which has 6 neutrons. Carbon-14 actually has 8 neutrons (2 extra), and as such it’s considered an isotope.

Now, the thing about isotopes is that they don’t last very long. C-14, for example, will eventually lose its extra neutrons and become C-12 – a process called radioactive decay. Some take longer to decay, while other isotopes transform in a flash! The experiments at the Lawrence Livermore lab are a prime example. Here, researchers shot at a 300-nanometer-thick foil of curium with accelerated calcium nuclei. When the two collided, they formed a compound system for a very short while. Using special filters composed of electrical and magnetic fields you can see what happens at the collision site down to the fraction of a second.

This is how the researchers found the isotopes of berkelium, neptunium, uranium and americium were created as the end products of such collisions. These formed a sextillionth of a second following the collision, and decayed only few milliseconds or seconds later, depending on the isotope. The findings were reported in Physics Letters B.

“These results really push what we know about nuclear structure to the extreme, neutron-deficient end of the chart of the nuclides,” Livermore researcher Dawn Shaughnessy said. “When you realize that naturally occurring uranium has 146 neutrons and this new isotope only has 124 neutrons, it shows how much more we still have yet to learn about nuclear structure and the forces that hold the nucleus together.”

It’s believed 4,000 additional, undiscovered isotopes should exist, and the Livermore researchers hope to add more new isotopes to the chart using the same technique.

share Share

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

Want to make the perfect pasta? Physics finally has the answer

Cacio e pepe has just three ingredients, but mastering it is harder than it looks.

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.