homehome Home chatchat Notifications


Milky Way Has Mysterious Lopsided Cloud Of Antimatter: Clue To Origin Of Antimatter

Antimatter is a fascinating story; basically nobody knows for sure what it could do and scientists have been trying to understand it for years. The artificial production of atoms of antimatter (specifically antihydrogen) first became a reality in the early 1990s. For example an atom of antihydrogen is composed of a negatively-charged antiproton being orbited […]

Mihai Andrei
January 14, 2008 @ 7:31 am

share Share

dark matter
Antimatter is a fascinating story; basically nobody knows for sure what it could do and scientists have been trying to understand it for years. The artificial production of atoms of antimatter (specifically antihydrogen) first became a reality in the early 1990s. For example an atom of antihydrogen is composed of a negatively-charged antiproton being orbited by a positively-charged positron. But still the clue that our old Milky Way galaxy gave us is relevant and important.

The thing is that the proton traveling at relativistic speeds and passing close to the nucleus of an atom has the potential to force the creation of an electron-positron pair. The shape of the mysterious cloud of antimatter in the central regions of the Milky Way has been revealed by ESA’s orbiting gamma-ray observatory Integral.

These observations almost eliminated the idea that the chances that the antimatter is coming from the annihilation or decay of astronomical dark matter. Georg Weidenspointner at the Max Planck Institute for Extraterrestrial Physics and an international team of astronomers made the discovery using four-years-worth of data from Integral.

“Simple estimates suggest that about half and possibly all of the antimatter is coming from the X-ray binaries,” says Weidenspointner. The other half could be coming from a similar process around the galaxy’s central black hole and the various exploding stars there. He points out that the lopsided distribution of hard LMXBs is unexpected, as stars are distributed more or less evenly around the galaxy. More investigations are needed to determine whether the observed distribution is real.

share Share

The Moon Used to Be Much Closer to Earth. It's Drifting 1.5 Inches Farther From Earth Every Year and It's Slowly Making Our Days Longer

The Moon influences ocean tides – and ocean tides, in some ways, influence the Moon back.

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

Astronomers May Have Discovered The First Rocky Earth-Like World With An Atmosphere, Just 41 Light Years Out

Astronomers may have discovered the first rocky planet with 'air' where life could exist.

Scientists Finally Prove Dust Helps Clouds Freeze and It Could Change Climate Models

New analysis links desert dust to cloud freezing, with big implications for weather and climate models.

Mars Seems to Have a Hot, Solid Core and That's Surprisingly Earth-Like

Using a unique approach to observing marsquakes, researchers propose a structure for Mars' core.

Giant solar panels in space could deliver power to Earth around the clock by 2050

A new study shows space solar panels could slash Europe’s energy costs by 2050.

Frozen Wonder: Ceres May Have Cooked Up the Right Recipe for Life Billions of Years Ago

If this dwarf planet supported life, it means there were many Earths in our solar system.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Scientists May Have Found a New Mineral on Mars. It Hints The Red Planet Stayed Warm Longer

Scientists trace an enigmatic infrared band to heated, oxygen-altered sulfates.