homehome Home chatchat Notifications


New metamaterial focuses radio waves with extreme precision similar to Star Wars' Death Star

Researchers at MIT have created a new metamaterial that they used to fashion a concave lens capable of focusing radio waves with extreme precision. The result lens is extremely lightweight compared to its counterparts developed from conventional materials, and could see promising applications in satellite telecommunications and space exploration of distant stars. In many ways […]

Tibi Puiu
November 15, 2012 @ 8:11 am

share Share

Researchers at MIT have created a new metamaterial that they used to fashion a concave lens capable of focusing radio waves with extreme precision. The result lens is extremely lightweight compared to its counterparts developed from conventional materials, and could see promising applications in satellite telecommunications and space exploration of distant stars.

In many ways metamaterials are supernatural, that’s because by definition it is a material artificially engineered by man to have properties that can never be encountered in nature. It’s  an extremely exciting field, since you’re basically building new, unique compounds and structures. The most interesting applications of metamaterials we’ve been granted to see comes in the form of invisibility cloaks and what’s commonly referred to as “super lenses” – extremely potent lenses that focus light beyond the range of optical microscopes to image objects at nanoscale detail.

Building the metamaterial lens

The latter is what MIT scientists have been going for with their negative refraction concave lens, which bends electromagnetic waves — in this case, radio waves — in exactly the opposite sense from which a normal concave lens would work. These properties are given off by the structure of the metamaterial, and how individual cells are arranged. In this case, the researchers built a blocky, S-shaped “unit cell” only a few millimeters wide whose shape refracts radio waves in particular directions – 4000 of these were arranged to form the concave negative refraction lens. Each of these cells only bends radio waves slightly, but together they focus the wave.

The orientation of 4,000 S-shaped units forms a metamaterial lens that focuses radio waves with extreme precision, and very little energy lost. (c) Dylan Erb

The orientation of 4,000 S-shaped units forms a metamaterial lens that focuses radio waves with extreme precision, and very little energy lost. (c) Dylan Erb

Isaac Ehrenberg, an MIT graduate student in mechanical engineering, shaped the lens via 3-D printing layer by intricate layer from a polymer solution. He then washed away any residue with a high-pressure water jet and coated each layer with a fine mist of copper to give the lens a conductive surface.

“There’s no solid block of any material in the periodic table which will generate this effect,” Ehrenberg says. “This device refracts radio waves like no other material found in nature.”

In an experiment, two radio antennas were positioned between the metamaterial lens. The resulting energy transmitted through it was found to travel through the lens almost in its entirety, with very little being lost with the metamaterial- significant improvement in energy efficiency when compared with past negative-refraction design. The team also found that radio waves converged in front of the lens at a very specific point, creating a tight, focused beam.

Star Wars’ Death Star laser beam?

As an analogy, Ehrenberg sees the design and functionality of the lens much in the same way as the Death Star’s concave dish that focuses a powerful laser beam to destroy nearby planets in the movie Star Wars. Again George Lucas’ awesome saga offers invaluable inspiration to scientists.

Since it weighs less than a pound, the lens could be used to focus radio waves precisely on molecules to create the same high-resolution images currently produced by very heavy and bulky lenses. Mass is one of the main factors taken into account for space applications, and future space satellites would definitely benefit from this. In addition, Ehrenberg says its fabrication is simple and easily replicated, allowing other scientists to investigate 3-D metamaterial designs.

“You can really fully explore the space of metamaterials,” Ehrenberg says. “There’s a whole other dimension that now people will be able to look into.”

His findings were documented in the Journal of Applied Physics.

source

 

share Share

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

Big Tech Said It Was Impossible to Create an AI Based on Ethically Sourced Data. These Researchers Proved Them Wrong

A massive AI breakthrough built entirely on public domain and open-licensed data

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

Lawyers are already citing fake, AI-generated cases and it's becoming a problem

Just in case you're wondering how society is dealing with AI.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Leading AI models sometimes refuse to shut down when ordered

Models trained to solve problems are now learning to survive—even if we tell them not to.

AI slop is way more common than you think. Here's what we know

The odds are you've seen it too.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

Scientists Invented a Way to Store Data in Plastic Molecules and It Could Someday Replace Hard Drives

What if your next hard drive wasn’t a box, but a string of molecules? Synthetic polymers promises to revolutionize data storage.