homehome Home chatchat Notifications


Beautiful Flow Visualization Explains Surface Tension

Ever heard of “tears of wine” or the phrase “the wine caught legs”? It’s common when you pour wine in a glass to see  a ring of clear liquid that forms near the top the glass above the surface of wine. These drops continuously form and fall in rivulets back into the liquid and are influenced […]

Tibi Puiu
October 23, 2014 @ 1:37 pm

share Share

WineLegs

Image: Wikipedia

Ever heard of “tears of wine” or the phrase “the wine caught legs”? It’s common when you pour wine in a glass to see  a ring of clear liquid that forms near the top the glass above the surface of wine. These drops continuously form and fall in rivulets back into the liquid and are influenced by a physical phenomenon called  Marangoni convection, or flow.

Tug and pull

 Marangoni flow

Marangoni convection is the tendency for heat and mass to travel to areas of higher surface tension within a liquid. Surface tension is a property of a liquid that causes the surface portion of liquid to be attracted to another surface, such as a drop of mercury that forms a cohesive ball in a thermometer or droplets of water on a well-waxed car.

Imagine a volume of liquid held in a container, say wine in a glass. In the middle of the liquid, the wine molecules are surrounded on all plains by other wine molecules, so everything’s fine and dandy – the molecules push each other up and down equally in perfect equilibrium. At the surface, however, the topmost wine molecules are interacting with two mediums: molecules above the surface (made of air), and those below the surface (wine). This imbalance in molecular forces is what causes surface tension. When the surface tension is constant it behaves like a very tight rubber band. Poke a hole in it and everything will try to pull away from the hole. Likewise, if the surface tension is disturbed, molecules will try to flow from low surface tension to higher surface tension.

Confused, yet? Here’s a simple experiment you can do at home really quick that will demonstrate surface tension: pour milk (higher fat content is better) and food coloring in a shallow container. Next, add a drop of soap or alcohol and prepare for a really cool and colourful spectacle. If you’re too lazy, though, feel free to watch the video below of the experiment.

Dyed Milk Spread from Flow Visualization @ CU Boulder on Vimeo.

share Share

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

A digital mask restores a 15th-century painting in just hours — not centuries.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

This 43,000-Year-Old Fingerprint on a Face-shaped Pebble May Be the First Neanderthal Artwork Ever Discovered

A tiny dot on a face-shaped pebble shows that Neanderthals also had the ability to understand abstract art.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

This Wild Laser Setup Reads Tiny Letters From Over 1.3 Kilometers Away

A 1950s astronomy technique was used to read pea-sized letters over 1.3 kilometers away.

Golden Dome or Glass Ceiling? Why Physicists Say Trump's Planetary-Scale Defense System Might Never Work

Inside Trump's $175 billion plan to build a missile shield in space.

France has a new laser rifle that can melt electronics from 500 meters away

This isn’t your average battlefield weapon.