homehome Home chatchat Notifications


Scientists just turned light-based information into readable soundwaves

It's like storing lightning in thunder.

Tibi Puiu
September 19, 2017 @ 12:53 am

share Share

Australian physicists at the University of Sydney converted information encoded in pulses of light into sound waves on the same computer chip. The process also worked in reverse. The research is considered a breakthrough in light-based computing which uses photons instead of electrons to relay bits.

light-bulb-1644993_960_720

Credit: Pixabay.

Light-based electronics are very appealing to the industry since photons can theoretically enable data transmission that’s an order of magnitude greater. A photon-computer could, for instance, be up to 20 times faster than the transistors operating on electrons inside your laptop. Li-Fi, a technology which uses light in routers, can be up to 100 times faster than WiFi.

Right now, transistors are nearing the limit of miniaturization silicon can accommodate. Mass produced computer chips nowadays have embedded transistors that are only 14 nanometers across. That’s only 70 silicon atoms wide.

Light-based computers are thus one possible solution to the otherwise impending halt for “Moore’s Law” — an axiom that suggests that the electronic devices double in speed and capability about every two years. It hasn’t been proven wrong in the last 40 years but the observation can’t remain viable forever.

If we make sure Moore’s Law is still kicking another 40 years though, the possibilities could be enormous.

A very light chip

There are challenges to building a photon chip, though. Ironically, photons are too fast to be read by microprocessors. And yes, fiber optic cables do use light waves to carry information but these are immediately slowed down into electrons for computers to swallow.

Before we can achieve photon-computer status, we have to jump through some hoops. An important intermediate step was recently achieved by a team led by Dr Birgit Stiller, a research fellow at the University of Sydney.

Stiller and colleagues transferred information from the optical to the acoustic domain and back again inside a chip, as described in Nature Communications. 

“The information in our chip in acoustic form travels at a velocity five orders of magnitude slower than in the optical domain,” said Dr Stiller said in a press release.

“It is like the difference between thunder and lightning,” she said.

This delay actually proves useful considering the state of the art right now. It gives the computer chip enough breath to store and manage the information for later processing, retrieval and further transmission as light waves. The video below gives you a glimpse of how all of this works.

“This is an important step forward in the field of optical information processing as this concept fulfills all requirements for current and future generation optical communication systems,” said Professor Benjamin Eggleton, study co-author.

share Share

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.

Women Rate Women’s Looks Higher Than Even Men

Across cultures, both sexes find female faces more attractive—especially women.

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

A digital mask restores a 15th-century painting in just hours — not centuries.

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

This nimble dinosaur may have sparked the evolution of one of the deadliest predators on Earth.

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

Your breath can tell a lot more about you that you thought.

In the UK, robotic surgery will become the default for small surgeries

In a decade, the country expects 90% of all keyhole surgeries to include robots.

Bioengineered tooth "grows" in the gum and fuses with existing nerves to mimic the real thing

Implants have come a long way. But we can do even better.

The Real Singularity: AI Memes Are Now Funnier, On Average, Than Human Ones

People still make the funniest memes but AI is catching up fast.

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

This isn’t your average timber.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.