homehome Home chatchat Notifications


LHC finds new type of matter after proton-lead collision

After the Large Hadron Collider‘s monumental find of the Higgs boson, the scientists in Geneva might have made new breakthrough finding. Scientists working with the  Compact Muon Solenoid, one of the two major-magnet particle detectors in the LHC, have discovered a new form of matter  known as color-glass condensate after studying proton-lead high speed collisions. The Large […]

Tibi Puiu
November 27, 2012 @ 4:39 pm

share Share

A proton collides with a lead nucleus, sending a shower of particles through the CMS detector.  (c) CERN

A proton collides with a lead nucleus, sending a shower of particles through the CMS detector. (c) CERN

After the Large Hadron Collider‘s monumental find of the Higgs boson, the scientists in Geneva might have made new breakthrough finding. Scientists working with the  Compact Muon Solenoid, one of the two major-magnet particle detectors in the LHC, have discovered a new form of matter  known as color-glass condensate after studying proton-lead high speed collisions.

The Large Hadron Collider was designed to accelerate particles at near-light speed velocities and collide them at tremendous amounts of energy, in order for them to garner more mass. This allows for more “shrapnel” made out of sub-atomic particles to be discarded, in which scientists are extremely interested. By studying collision behavior between various kinds of particles, the scientists can recreate the conditions of the universe in the few micro-moments immediately following the Big Bang, and thus test out theories.

The resulting sub-atomic particles, usually fly about in all directions, but in some cases, a few in thousands, some of these particles fly away from each other with their respective directions correlated. This has been seen before in the case of proton-proton interactions, as well as other ion-heavy collisions like those between the nuclei of heavy metals like lead. Now, scientists working  with the Compact Muon Solenoid (CMS) team at the LHC found  the same effects in a sample of 2 million lead-proton collisions.

“Somehow they fly at the same direction even though it’s not clear how they can communicate their direction with one another. That has surprised many people, including us,” says MIT physics professor Gunther Roland, whose group led the analysis of the collision data along with Wei Li, a former MIT postdoc who is now an assistant professor at Rice University.

The data was taken after only four hour of operation at little more than half the  particle accelerator’s  full capacity. It has been theorized that proton-proton collisions may produce a liquid-like wave of gluons, known as color-glass condensate. The researchers believe that the same swarm of gluons might have also produced the same unusual collision pattern seen in proton-lead.  Why is this important? Well, for one these results were far from being expected. The researchers only introduced a proton-lead collision experiment in order to build control data for proton-proton collisions. Every bit of information that leads to a better understanding of how particles and sub-atomic particles interact is of great value, and this latest discovery makes no exception.

The LHC had only just begun colliding these two types of particles together in September, so the surprising results are doubly impressive. The scientists currently have planed another run of collisions within a few weeks to see if the findings are replicated.

The findings were reported in the journal Physical Review B

source: MIT News

share Share

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

This Wild Laser Setup Reads Tiny Letters From Over 1.3 Kilometers Away

A 1950s astronomy technique was used to read pea-sized letters over 1.3 kilometers away.

Golden Dome or Glass Ceiling? Why Physicists Say Trump's Planetary-Scale Defense System Might Never Work

Inside Trump's $175 billion plan to build a missile shield in space.

France has a new laser rifle that can melt electronics from 500 meters away

This isn’t your average battlefield weapon.

The Strongest Solar Storm Ever Was 500 Times More Powerful Than Anything We've Seen in Modern Times. It Left Its Mark in a 14,000-Year-Old Tree

The ancient event, over 500 times stronger than any modern storm, would be devastating were it to happen today.

This is absolutely the best way to crack an egg, according to science

The side of the egg is, surprisingly, more resilient. It acts like a shock absorber.