homehome Home chatchat Notifications


Inspired by a Japanese basket, physicists create new metal with peculiar properties

Kagome is a popular style element in Japanese basket-making characterized by a symmetrical pattern of interlaced triangles.

Tibi Puiu
March 20, 2018 @ 10:55 pm

share Share

kagome lattice

An illustration depicting the atomic lattice of a kagome metal. Credit: FELICE FRANKEL / CHELSEA TURNER.

Kagome is a popular style element in Japanese basket-making characterized by a symmetrical pattern of interlaced triangles, whose lattice points each have four neighboring points. While the kagome has fallen out of fashion, being replaced by plastic baskets, this elegant pattern is still of particular interest to physicists. Theoretically, were a metal to have atoms arranged in the same kagome pattern, it should display some peculiar electrical properties. Now, a mixed team of scientists at MIT, Harvard University, and Lawrence Berkeley National Laboratory did just that, and the product does indeed showcase exotic physics.

The resulting metal — the products of decades of research — is comprised of layers of iron and tin atoms, where each layer is arranged in the repeating pattern of a kagome lattice. When the researchers released an electrical current through the metal, instead of electrons flowing straight through the lattice (as is happens for the majority of metals), they veered or bent back within the lattice. This behavior mirrors the Quantum Hall effect, in which electrons flowing through a two-dimensional material exhibit a “chiral, topological state.”

“By constructing the kagome network of iron, which is inherently magnetic, this exotic behavior persists to room temperature and higher,” says Joseph Checkelsky, assistant professor of physics at MIT. “The charges in the crystal feel not only the magnetic fields from these atoms, but also a purely quantum-mechanical magnetic force from the lattice. This could lead to perfect conduction, akin to superconductivity, in future generations of materials.”

Kagome basket weaver in Japan. Credit: Wikimedia Commons.

Kagome basket weaver in Japan. Credit: Wikimedia Commons.

In order to make the metal, the team first ground iron and iron together, then heated the resulting powder at 1,380 degrees Fahrenheit (750 degrees Celsius). At precisely this temperature, the iron and tin atoms crystallize and arrange themselves in a kagome-patterned lattice. Finally, the crystals are submerged in an ice bath, which makes the lattice stable at room temperature.

“The kagome pattern has big empty spaces that might be easy to weave by hand but are often unstable in crystalline solids, which prefer the best packing of atoms,” said Linda Ye, co-author of the study and also from MIT. “The trick here was to fill these voids with a second type of atom in a structure that was at least stable at high temperatures. Realizing these quantum materials doesn’t need alchemy, but instead materials science and patience.”

According to the researchers, similar metals with kagome lattices could prove useful in a wide array of applications from quantum computing to “dissipationless” power lines that don’t lose energy.

Scientific reference: Massive Dirac fermions in a ferromagnetic kagome metal, Nature (2018).

share Share

A Former Intelligence Officer Claimed This Photo Showed a Flying Saucer. Then Reddit Users Found It on Google Earth

A viral image sparks debate—and ridicule—in Washington's push for UFO transparency.

This Flying Squirrel Drone Can Brake in Midair and Outsmart Obstacles

An experimental drone with an unexpected design uses silicone wings and AI to master midair maneuvers.

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

In Arizona’s desert, a 500-year-old cannon sheds light on conquest, resistance, and survival.

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain