homehome Home chatchat Notifications


Massive 8.6 quake strikes Indonesia - but didn't create a monster tsunami

An 8.6-magnitude earthquake and powerful aftershocks struck the coast of Indonesia today, resurrecting fears of a big tsunami like the one responsible for one of the biggest modern disasters ever. However, this earthquake, which struck at 2:38 p.m. local time (4:38 a.m. ET), about 270 miles (435 kilometers) off the coast of the Indonesian island […]

Mihai Andrei
April 11, 2012 @ 12:56 pm

share Share

An 8.6-magnitude earthquake and powerful aftershocks struck the coast of Indonesia today, resurrecting fears of a big tsunami like the one responsible for one of the biggest modern disasters ever. However, this earthquake, which struck at 2:38 p.m. local time (4:38 a.m. ET), about 270 miles (435 kilometers) off the coast of the Indonesian island was drastically different than the 9.1 earthquake that hit Indonesia in 2004.

Strike slip, subduction, and the earthquake in Indonesia

Earthquakes come in different sizes and “flavors”. The can occur as a result of subduction zones, when one tectonic plate is moving beneath another one, causing a massive amount of friction and stress, they can be strike-slip earthquakes – when plates are moving laterally one in respect to the other, or they can occur even due to mineral phase changes in the depths of the Earth. While the one in 2004 was a subduction, this one was a strike-slip earthquake, and typically, these kind of events aren’t associated with big tsunami risks.

Diagram of a subduction zone; the earthquake in 2004 was a result of such a subduction zone

“With a strike-slip event you don’t have the same potential hazard for a tsunami as you do with a subduction event because the plates are moving adjacent to each other,” said Julie Dutton, a geophysicist with the U.S. Geological Survey (USGS).

The 8.6 earthquake

The epicenter was pretty much in the same place as the 9.1 one in 2004, which created a tsunami that killed over 220.000 people. However, even though the magnitudes may seem similar, the difference is quite big: the magnitude is measured in a logarithmic scale, which means that in this case, a magnitude of 9 is 10 times bigger than than a magnitude of 8. In the same way, an 8.6 one is over 3 times less powerful than a 9.1 one, so the magnitude difference is quite significant.

The earthquake was followed by an 8.2-magnitude aftershock hit at 6:43 a.m. ET, the USGS said, raising the tsunami alerts, but as I already said, it’s usually subduction earthquakes that are associated with major tsunamis. This happens because when one tectonic plate is diving beneath another, a huge portion of the seafloor is shoved beneath, and that displacement of sea floor also displaces ocean water. Basically, the more seafloor you shove beneath the other plate, the bigger tsunami you get. At a strike slip earthquake, faults in the crust essentially moved from side to side instead of up and down, and as a result, the largest tsunami recorded was smaller than 2 meters, so all alerts have been lowered.

An estimation of the damage caused by the earthquake is still not available, but we’ll keep you posted on the developments as they occur.

share Share

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

Want to make the perfect pasta? Physics finally has the answer

Cacio e pepe has just three ingredients, but mastering it is harder than it looks.

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

A strange particle traveled across the universe and slammed into the deep sea.

This underwater eruption sent gravitational ripples to the edge of the atmosphere

The colossal Tonga eruption didn’t just shake the seas — it sent shockwaves into space.

New Quantum Navigation System Promises a Backup to GPS — and It’s 50 Times More Accurate

An Australian startup’s device uses Earth's magnetic field to navigate with quantum precision.

Japanese Scientists Just Summoned Lightning with a Drone. Here’s Why

The drone is essentially a mobile, customizable, lightning rod.

Packed Festival Crowds Actually Form Living Vortices -- And You Can Predict Them with Physics

The physics of crows explains why they sometimes move like waves.

Scientists Found a Way to Turn Falling Rainwater Into Electricity

It looks like plumbing but acts like a battery.

Why Geological Maps Are the Best Investment You’ve Never Heard Of

Investments in geological mapping paid off big time for Americans.

The Mediterranean Sea Was Once Dry—Then a Gigantic Flood Changed Everything

It's probably the largest flood in our planet's history.