homehome Home chatchat Notifications


At a few million atmospheric pressures, Hydrogen nears metal conductivity

Hydrogen is the most common element in the Universe. It’s the first element in the periodic table, and it has but one proton and one electron. Understanding how it behaves at very large pressures is crucial to our understanding of matter and the nature of hydrogen-rich planets. Under typical conditions, Hydrogen is a diatomic molecule […]

Mihai Andrei
June 5, 2013 @ 6:08 am

share Share

Hydrogen is the most common element in the Universe. It’s the first element in the periodic table, and it has but one proton and one electron. Understanding how it behaves at very large pressures is crucial to our understanding of matter and the nature of hydrogen-rich planets.

hydrogen

Under typical conditions, Hydrogen is a diatomic molecule (H2); but as pressure increases, these molecules start to change – these different forms are called phases, and hydrogen as three well known solid phases. But it has also been speculated that at very large pressures, it starts acting like a metal, conducting electricity. As a matter of fact, a few more bold physicists believe that it can even become a superconductor or a superfluid that never freezes–a completely new and exotic state of matter.

In this new paper, a team from Carnegie’s Geophysical Laboratory examined the structure, bonding and electronic properties of highly compressed hydrogen using a technique called infrared radiation.

The team found the new form to occur between 2.2 million atmospheres at about 25 degrees Celsius (80 Fahrenheit) to at least 3.4 million times atmospheric pressure and about -70 degrees Celsius (-100 Fahrenheit).

Their results showed that in these conditions, hydrogen acts like no other structure that we know of. It has two very different types molecules in its structure – one which interacts very weakly with its neighboring molecules (highly unusual for matter at such high pressures), and another which bonds with its neighbors, forming surprising planar sheets.

“This simple element–with only one electron and one proton–continues to surprise us with its richness and complexity when it is subjected to high pressures,” Russell Hemley, Director of the Geophysical Laboratory, said. “The results provide an important testing ground for fundamental theory.”

Via Carnegie

share Share

The Moon Used to Be Much Closer to Earth. It's Drifting 1.5 Inches Farther From Earth Every Year and It's Slowly Making Our Days Longer

The Moon influences ocean tides – and ocean tides, in some ways, influence the Moon back.

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

Scientists Solved a Key Mystery Regarding the Evolution of Life on Earth

A new study brings scientists closer to uncovering how life began on Earth.

What Do Ancient Egyptian Mummies Smell Like? "Woody", "Spicy" and Even "Sweet"

Scientists used an 'electronic nose' (and good old biological sniffers) to reveal the scents of ancient mummies.

Scientists Finally Prove Dust Helps Clouds Freeze and It Could Change Climate Models

New analysis links desert dust to cloud freezing, with big implications for weather and climate models.

Why Beer Foam Lasts Longer in Belgian Ales Than in Anything Else

Why some beers keep their head longer than others—and what it means beyond brewing

Scientists Made 'Jelly Ice' That Never Melts. It's Edible, Compostable and Reusable

This squishy ice made from gelatin keeps things cold without the mess of melting.

World's Oldest Water is 1.6 billion Years Old -- and This Scientist Tasted It

Apparently, it tastes 'very salty and bitter'.

Frozen Wonder: Ceres May Have Cooked Up the Right Recipe for Life Billions of Years Ago

If this dwarf planet supported life, it means there were many Earths in our solar system.

New Hydrogel Is So Sticky It Can Hold a Rubber Duck to a Rock Through Crashing Ocean Waves

The new material can stick through waves, salt, and even high pressure.