homehome Home chatchat Notifications


At a few million atmospheric pressures, Hydrogen nears metal conductivity

Hydrogen is the most common element in the Universe. It’s the first element in the periodic table, and it has but one proton and one electron. Understanding how it behaves at very large pressures is crucial to our understanding of matter and the nature of hydrogen-rich planets. Under typical conditions, Hydrogen is a diatomic molecule […]

Mihai Andrei
June 5, 2013 @ 6:08 am

share Share

Hydrogen is the most common element in the Universe. It’s the first element in the periodic table, and it has but one proton and one electron. Understanding how it behaves at very large pressures is crucial to our understanding of matter and the nature of hydrogen-rich planets.

hydrogen

Under typical conditions, Hydrogen is a diatomic molecule (H2); but as pressure increases, these molecules start to change – these different forms are called phases, and hydrogen as three well known solid phases. But it has also been speculated that at very large pressures, it starts acting like a metal, conducting electricity. As a matter of fact, a few more bold physicists believe that it can even become a superconductor or a superfluid that never freezes–a completely new and exotic state of matter.

In this new paper, a team from Carnegie’s Geophysical Laboratory examined the structure, bonding and electronic properties of highly compressed hydrogen using a technique called infrared radiation.

The team found the new form to occur between 2.2 million atmospheres at about 25 degrees Celsius (80 Fahrenheit) to at least 3.4 million times atmospheric pressure and about -70 degrees Celsius (-100 Fahrenheit).

Their results showed that in these conditions, hydrogen acts like no other structure that we know of. It has two very different types molecules in its structure – one which interacts very weakly with its neighboring molecules (highly unusual for matter at such high pressures), and another which bonds with its neighbors, forming surprising planar sheets.

“This simple element–with only one electron and one proton–continues to surprise us with its richness and complexity when it is subjected to high pressures,” Russell Hemley, Director of the Geophysical Laboratory, said. “The results provide an important testing ground for fundamental theory.”

Via Carnegie

share Share

After 100 years, physicists still don't agree what quantum physics actually means

Does God play dice with the universe? Well, depends who you ask.

Physicists Make First Qubit out of Antimatter and It Could One Day Explain Why the Universe Exists At All

Antimatter was held in a qubit state for nearly a minute.

Scientists Superheated Gold to 14 Times Its Melting Point and It Remained Solid

No laws of physics were harmed in this process.

This Startup Claims It Can Turn Mercury Into Gold Using Fusion Energy and Scientists Are Intrigued

The age-old alchemist's dream may find new life in the heart of a fusion reactor.

Our Radar Systems Have Accidentally Turned Earth into a Giant Space Beacon for the Last 75 Years and Scientists Say Aliens Could Be Listening

If aliens have a radio telescope, they already know we exist.

How Pesticides Are Giving Millions of Farmers Sleepless Nights

Pesticides seem to affect us in even more ways than we thought.

Mesmerizing Fluid “Fireworks” Reveal Clues for Trapping Carbon Underground

Simulations show stunning patterns that could shape future carbon capture strategies.

A Simple Heat Hack Could Revolutionize How We Produce Yogurt

In principle, the method could be deployed tomorrow, researchers say.

Cycling Is Four Times More Efficient Than Walking. A Biomechanics Expert Explains Why

The answer lies in the elegant biomechanics of how our bodies interact with this wonderfully simple machine.

Scientists Just Showed How Alien Life Could Emerge in Titan's Methane Lakes

What if the ingredients of life could assemble on a methane world?