homehome Home chatchat Notifications


Hydrogen turned into a metal for the first time. Technology and spaceflight might never be the same

If confirmed, this could be one of the most revolutionary material of the century

Tibi Puiu
January 27, 2017 @ 3:29 pm

share Share

Image of diamond anvils compressing molecular hydrogen. At higher pressure the sample converts to atomic hydrogen, as shown on the right. Credit: R. Dias and I.F. Silvera.

Image of diamond anvils compressing molecular hydrogen. At higher pressures, the sample converts to atomic hydrogen, as shown on the right. Credit: R. Dias and I.F. Silvera.

By subjecting molecular hydrogen, a gas, to ungodly pressures higher than those found at the Earth’s core, Harvard researchers have accomplished the impossible: they’ve turned the lightest element into a metal. This is now the rarest and possibly the most expensive material on the planet. This may soon change as metal hydrogen moves from the stuff of alchemy to a critical resource in mankind’s quest of becoming an interstellar species.

The new material was created by Isaac Silvera, the Thomas D. Cabot Professor of the Natural Sciences, and post-doctoral fellow Ranga Dias. For over a hundred years scientists knew that it was theoretically possible to turn hydrogen into a metal if you compress it under the right condition but no one was able to prove it until recently.

“This is the holy grail of high-pressure physics,” Silvera said. “It’s the first-ever sample of metallic hydrogen on Earth, so when you’re looking at it, you’re looking at something that’s never existed before.

A tiny hydrogen sample was squeezed with a pressure of 495 gigapascals, or more than 71.7 million pounds-per-square-inch. The sample was also chilled to just above absolute zero. At such a tremendous strain, the molecular hydrogen breaks down and the dissociative elements turn into atomic hydrogen, which is a metal. When the researchers stopped the experiment, everyone was dumbstruck when they saw their sample was shining!

Findings were reported in the journal Science.

‘It’s a very fundamental and transformative discovery’ — Professor Silvera

What makes metallic hydrogen so interesting is the fact that it may be meta-stable, as reported by some models. In other words, once you lift the immense pressure that went into birthing the metal, the hydrogen will stay a metal. It’s akin to how graphite under immense heat and pressure turns into a diamond and remains in this configuration even after said heat and pressure is removed.

Compressed hydrogen going from transparent molecular to black molecular to atomic metallic hydrogen. Credit: R. Dias and I.F. Silvera

This feature has excited a lot of people, both in science and industry. That’s because metallic hydrogen has a couple of very appealing features. It’s predicted that metallic hydrogen could act as a superconductor at room temperatures, allowing electricity to flow through it with zero loss. Right now, as much as 15 percent of all the electricity we generate is lost down power lines.

It’s in transportation, however, that metallic hydrogen could be revolutionary. Its superconductive properties could make high-speed trains that use magnetic levitation a common sight. If used as a fuel, metallic hydrogen would be four times more powerful than the best propellant at our disposal today.

“It takes a tremendous amount of energy to make metallic hydrogen,” Professor Silvera said.

“And if you convert it back to molecular hydrogen, all that energy is released, so it would make it the most powerful rocket propellant known to man, and could revolutionize rocketry.

“That would easily allow you to explore the outer planets.”

Now, the researchers need to find out if the metal hydrogen is indeed stable at the surface and doesn’t decay in time.  Already, there are voices who have criticized the discovery. Speaking to Nature News, five experts claim the evidence presented so far is unconvincing.

“If they want to be convincing, they have to redo the measurement, really measuring the evolution of pressure,” says Paul Loubeyre, a physicist at France’s Atomic Energy Commission in Bruyères-le-Châtel. “Then they have to show that, in this pressure range, the alumina is not becoming metallic.”

share Share

A Former Intelligence Officer Claimed This Photo Showed a Flying Saucer. Then Reddit Users Found It on Google Earth

A viral image sparks debate—and ridicule—in Washington's push for UFO transparency.

This Flying Squirrel Drone Can Brake in Midair and Outsmart Obstacles

An experimental drone with an unexpected design uses silicone wings and AI to master midair maneuvers.

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

In Arizona’s desert, a 500-year-old cannon sheds light on conquest, resistance, and survival.

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain