homehome Home chatchat Notifications


Physicists net fractal butterfly which explains electron behaviour

What you’re seeing above is the Hofstadter’s butterfly – a mathematical object describing the theorised behaviour of electrons in a strong magnetic field. It took physicists 40 years, but they have finally found experimental evidence that the model, proposed in 1976 by Douglas Hofstadter is valid. Thing is, to catch this kind of fractal butterfly, […]

Mihai Andrei
September 11, 2013 @ 8:40 am

share Share

What you’re seeing above is the Hofstadter’s butterfly – a mathematical object describing the theorised behaviour of electrons in a strong magnetic field. It took physicists 40 years, but they have finally found experimental evidence that the model, proposed in 1976 by Douglas Hofstadter is valid.

butterfly

Thing is, to catch this kind of fractal butterfly, you need a special type of net. Since May, several groups have been working on (and published) experiments that sought the pattern using hexagonal lattices of atoms, and just a month ago, others reported seeking it with atomic laser traps. Proving and understanding the validity of the Hofstadter butterfly could help in the development of materials with exotic electric properties. But of course, proving a theory so ahead of its time is a major achievement in itself.

“Hofstadter’s concept was initially disturbing to a lot of people,” says Cory Dean, an experimental physicist at the City College of New York. “Now we can say his proposal wasn’t so crazy after all.”

Hofstadter, one of the most brilliant mind off the face of the Earth, abandoned physics not long after proposing this model, moving on to computer science – where his work was also valuable. He also won the Pulitzer prize for nonfiction with his book – Gödel, Escher, Bach: an Eternal Golden Braid, and is now working as a professor of cognitive science whose research focuses on the sense of “I”, consciousness, analogy-making, artistic creation, literary translation, and discovery in mathematics and physics.

He sketched this model while he was still a graduate student in physics; since then, it was known that electrons under the influence of a magnetic field tend to race around in circles, but Hofstadter showed that if you put the electrons inside a crystalline atomic lattice, their motion becomes much more complicated. As the magnetic field increases more and more, the energy levels that define the motion of electrons split again and again; when you graph those energy levels, the result is the fractal butterfly.

The idea is difficult to test, as the required strength of the magnetic field is quite high, and it depends on the spacing between the atoms in the lattice. After applying the necessary field, the researchers reported discrete, but relevant changes in the conductivity of the composite material — stepwise jumps that result from splits in the energy levels of its electrons. These are not necessary direct indication of the butterfly, but as good as an indirect clue as you’re ever gonna get.

“We found a cocoon,” says Pablo Jarillo-Herrero, an experimental physicist at the Massachusetts Institute of Technology (MIT) in Cambridge. “No one doubts that there’s a butterfly inside.”

It’s so incredibly satisfying to see a mathematical theory from the 70s confirmed by experimental measurements in 2013… Ok guys, I’m gonna say it: science is awesome!

Via Nature

share Share

Scientists Detect Light Traversing the Entire Human Head—Opening a Window to the Brain’s Deepest Regions

Researchers are challenging the limits of optical brain imaging.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

This Wild Laser Setup Reads Tiny Letters From Over 1.3 Kilometers Away

A 1950s astronomy technique was used to read pea-sized letters over 1.3 kilometers away.

Golden Dome or Glass Ceiling? Why Physicists Say Trump's Planetary-Scale Defense System Might Never Work

Inside Trump's $175 billion plan to build a missile shield in space.

France has a new laser rifle that can melt electronics from 500 meters away

This isn’t your average battlefield weapon.

The Strongest Solar Storm Ever Was 500 Times More Powerful Than Anything We've Seen in Modern Times. It Left Its Mark in a 14,000-Year-Old Tree

The ancient event, over 500 times stronger than any modern storm, would be devastating were it to happen today.