homehome Home chatchat Notifications


New spin makes graphene magnetic

I was telling you a while ago about the revolutionary material called graphene. Graphene is a one atom thick layer of carbon packed in a honeycomb lattice. Now, a team led by Professor Andre Geim, recipient of the Nobel Prize for graphene, showed that electric current (which is basically a flow of electrons) can magnetise […]

Mihai Andrei
April 16, 2011 @ 4:12 am

share Share

I was telling you a while ago about the revolutionary material called graphene. Graphene is a one atom thick layer of carbon packed in a honeycomb lattice. Now, a team led by Professor Andre Geim, recipient of the Nobel Prize for graphene, showed that electric current (which is basically a flow of electrons) can magnetise the material.

This could lead to an extremely fast development of spintronics, an emerging group of technologies that exploit the intrinsic spin of the electron, in addition to its fundamental electric charge that is exploited in microelectronics. The findings involve a great number of researchers from the US, Russia, Japan and the Netherlands.

It is believed that in future spintronics transistors and devices, coupling between the current and spin will be direct, without having to use magnetic materials to inject spins, which is the way things are done at the moment.

Professor Geim said:

“The holy grail of spintronics is the conversion of electricity into magnetism or vice versa. We offer a new mechanism, thanks to unique properties of graphene. I imagine that many venues of spintronics can benefit from this finding.”

Antonio Castro Neto, a physics professor from Boston who wrote a news article for the Science magazine which accompanies the research paper commented: “Graphene is opening doors for many new technologies.

“Not surprisingly, the 2010 Nobel Physics prize was awarded to Andre Geim and Kostya Novoselov for their groundbreaking experiments in this material. Apparently not satisfied with what they have accomplished so far, Geim and his collaborators have now demonstrated another completely unexpected effect that involves quantum mechanics at ambient conditions. This discovery opens a new chapter to the short but rich history of graphene.”

share Share

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

This isn’t your average timber.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

These Bacteria Exhale Electricity and Could Help Fight Climate Change

Some E. coli can survive by pushing out electrons instead of using oxygen

Student Finds the Psychedelic Fungus the Inventor of LSD Spent His Life Searching For

The discovery could reshape how we study psychedelic compounds in nature and medicine.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

Scientists Invented a Way to Store Data in Plastic Molecules and It Could Someday Replace Hard Drives

What if your next hard drive wasn’t a box, but a string of molecules? Synthetic polymers promises to revolutionize data storage.

This Wild Laser Setup Reads Tiny Letters From Over 1.3 Kilometers Away

A 1950s astronomy technique was used to read pea-sized letters over 1.3 kilometers away.