homehome Home chatchat Notifications


Scientists believe they've found a particle made entirely of strong nuclear force - a glueball

After decades of searching, researchers believe they have finally discovered a glueball - a proposed particle that consists solely of gluon particles.

Mihai Andrei
October 15, 2015 @ 6:48 am

share Share

After decades of searching, researchers believe they have finally discovered a glueball – a proposed particle that consists solely of gluon particles, without valence quarks, that is instrumental to the Standard Model of Physics, but hasn’t been observed until now.

A crash course in particle physics

Nucleons consist (left) of quarks (matter particles) and gluons (force particles). A glueball (right) is made up purely of gluons. Image via Physorg.

There are four forces governing the basic interactions of particles – these are called the fundamental forces: gravity, electromagnetic, weak nuclear and strong nuclear. All the interactions in the universe can be described by some combination of these forces. Now, in 1970, physicists tried to write down how these forces interact with each other at the subatomic level, and predicted all the particles that they believe make up the universe. The current formulation was finalized in the mid-1970s upon experimental confirmation and since then, further experiments have confirmed the validity of the Standard Model.

According to the model, protons and neutrons are made of minuscule elementary particles called quarks. These quarks are held together by even smaller particles, gluons. Gluons are massless particles somewhat similar to photons – just like photons are responsible for exerting the electromagnetic force, gluons are responsible for exerting the strong nuclear force. In a way, they are strong nuclear force.

“In particle physics, every force is mediated by a special kind of force particle, and the force particle of the strong nuclear force is the gluon,” explains one of the researchers, Anton Rebhan from the Vienna University of Technology.

Finding glueballs

But there is one major difference: while photons aren’t affected by the force they exert, gluons are. In other words, gluons can’t be held together by strong nuclear force, but they can do exert strong magnetic force on other particles; that’s just how the strange world of particle physics sometimes works.

However, while glueballs are massless on their own, their interactions with other glueballs does give them a mass, which means that scientists can theoretically detect them, albeit indirectly, through their disintegration process, but that’s extremely difficult because in particle accelerators, glueballs tend to mix with other particles (namely meson states).

However, Rebhan and his team published a report in Physical Review Letters which gives a lot of hope for detecting these particles.

“Our calculations show that it is indeed possible for glueballs to decay predominantly into strange quarks,” he says.

They will now analyze more data from the Large Hadron Collider at CERN (TOTEM and LHCb) in Switzerland and an accelerator experiment in Beijing (BESIII) to help confirm their find.

“These results will be crucial for our theory,” says Rebhan. “For these multi-particle processes, our theory predicts decay rates which are quite different from the predictions of other, simpler models. If the measurements agree with our calculations, this will be a remarkable success for our approach.”

 

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.