homehome Home chatchat Notifications


Fusion rocket a step closer to taking man on Mars in 30 days

Billions of dollars and decades worth of research have been invested in fusion propelling technology, so that one day we might breach current spaceflight limitations that offer little hope of straying too far from our planet. Researchers at Washington University have recently made great strides forward in this respect and have successfully tested each stage […]

Tibi Puiu
April 11, 2013 @ 7:32 am

share Share

A concept image of a spacecraft powered by a fusion-driven rocket. In this image, the crew would be in the forward-most chamber. Solar panels on the sides would collect energy to initiate the process that creates fusion. (c) University of Washington

A concept image of a spacecraft powered by a fusion-driven rocket. In this image, the crew would be in the forward-most chamber. Solar panels on the sides would collect energy to initiate the process that creates fusion. (c) University of Washington

Billions of dollars and decades worth of research have been invested in fusion propelling technology, so that one day we might breach current spaceflight limitations that offer little hope of straying too far from our planet. Researchers at Washington University have recently made great strides forward in this respect and have successfully tested each stage of their fusion rocket in the lab so far. If they manage to combine all the stages to work together then spaceflight will be in for nothing short of a revolution. For instance, uing a fusion powered rocket a trip to Mars would only take 30 days compared to years using current technology.

The team of scientists, led by John Slough, have been working for the past few years on an unique solution of manipulation nuclear fusion and so far their tests of individual stages have proven successful in the lab. The next step is to combine these isolated stages into a working fusion rocket, but to achieve this they need to generate more power than the fusion process requires for kickstart – a feat that is a lot more difficult than it sounds since it hasn’t been achieved not even to this day, despite 60 years worth of research and billions invested.

What makes fusion rockets particularly appealing is their immense energy density – 7 million times more dense than conventional rocket fuel. This means that you can build not only more powerful rockets – powerful enough to make a trip to Mars in a mere 30 days at 200,000 miles per hour – but lighter ones as well, significantly reducing cost.

“Using existing rocket fuels, it’s nearly impossible for humans to explore much beyond Earth. We are hoping to give us a much more powerful source of energy in space that could eventually lead to making interplanetary travel commonplace,” Slough was quoted by the university as saying.

The fusion driven rocket test chamber at the UW Plasma Dynamics Lab in Redmond. The green vacuum chamber is surrounded by two large, high-strength aluminum magnets. These magnets are powered by energy-storage capacitors through the many cables connected to them. (c) University of Washington

The fusion driven rocket test chamber at the UW Plasma Dynamics Lab in Redmond. The green vacuum chamber is surrounded by two large, high-strength aluminum magnets. These magnets are powered by energy-storage capacitors through the many cables connected to them. (c) University of Washington

New age of space travel once fusion rockets kick in

The technology basically relies on a sort of plasma encased in its own magnetic field which when compressed produces nuclear fusion, similar to how diesel engines compress diesel fuel to produce combustion. The plasma is deuterium-tritium (hydrogen isotopes) and this is surrounded by metal rings of lithium. At the right time when the plasma reaches a certain points in the combustion chamber, a magnetic fields acts and causes the rings to compress the plasma. The force of implosion is so immense that the metal rings cause the plasma to compress into nuclear fusion. The metal rings would be ejected out of the rocket at 67,000 mph (108,000 kmh), generating thrust in a process that is repeated every 10 seconds allowing the rocket to accelerate somewhere around 200,000 miles per hour. This is the plan and so far only each individual stage taken separately have been tested.

Their work is really cut out for them, since, again, they need to solve the energy problem – producing more energy than it is pumped to kickstart the reaction and then maintaining this reaction. It’s the later that causes so many hurdles; starting nuclear fusion isn’t that difficult, maintaining and then converting the thermal energy into electrical current is something that hasn’t be achieved yet. Yet, the Washington University researchers work seems promising enough.

Most likely, however, they won’t be able to finish a working fusion rocket, if ever, any time soon. Not in time for Dennis Tito’s 2018 manned expedition to Mars, slated to last 500 days. For more about fusion rockets work check the video below.

The project is funded through NASA’sInnovative Advanced Concepts Program. Last month at a symposium, Slough and his team from MSNW, of which he is president, presented their mission analysis for a trip to Mars, along with detailed computer modeling and initial experimental results

 

share Share

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Scientists Used Lasers To Finally Explain How Tiny Dunes Form -- And This Might Hold Clues to Other Worlds

Decoding how sand grains move and accumulate on Earth can also help scientists understand dune formation on Mars.

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

Astronomers Claim the Big Bang May Have Taken Place Inside a Black Hole

Was the “Big Bang” a cosmic rebound? New study suggests the Universe may have started inside a giant black hole.

Astronomers Just Found the Most Powerful Cosmic Event Since the Big Bang. It's At Least 25 Times Stronger Than Any Supernova

The rare blasts outshine supernovae and reshape how we study black holes.

Terraforming Mars Might Actually Work and Scientists Now Have a Plan to Try It

Can we build an ecosystem on Mars — and should we?

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

New Simulations Suggest the Milky Way May Never Smash Into Andromeda

A new study questions previous Milky Way - Andromeda galaxy collision assumptions.