homehome Home chatchat Notifications


When laying the foundations for life, the Universe leaves little room for error

All life as we know it is primarily based on two elements: carbon and oxygen. Scientists at North Carolina State University investigating the conditions required for the formation of these life essential ingredients found that the Universe lives little room for error. Carbon and oxygen are formed as combustion byproducts after helium burns inside a […]

Tibi Puiu
March 18, 2013 @ 6:44 am

share Share

Light quark mass determines carbon and oxygen production and the viability of carbon-based life. Image credit: Dean Lee. Earth and Mercury images from NASA.

Light quark mass determines carbon and oxygen production and the viability of carbon-based life. Image credit: Dean Lee. Earth and Mercury images from NASA.

All life as we know it is primarily based on two elements: carbon and oxygen. Scientists at North Carolina State University investigating the conditions required for the formation of these life essential ingredients found that the Universe lives little room for error.

Carbon and oxygen are formed as combustion byproducts after helium burns inside a giant red star. However, for Carbon-12 to form – an essential carbon isotope we’re all made of – specific conditions need to be facilitated. Carbon-12 can only form when alpha particles (helium-4 nuclei) combine in  a specific manner – to be more precise, carbon-12 needs to be under an excited state known as the Hoyle state. Similarly, Oxygen is produced  by the combination of another alpha particle and carbon.

NC State physicists worked off previous research that confirmed both the existence and structure of the Hoyle state with a numerical lattice, which formed the basis for simulations of proton-neutron interactions. Protons and neutrons consist of elementary particles known as quarks. A fundamental property of these elementary particles is the light quark mass, which affects the particles’ energies. The Hoyle state has a very specific energy – measured at 379 keV (or 379,000 electron volts) above the energy of three alpha particles.

The physicists ran a new lattice calculation using massive computing power at the Juelich Supercomputer Centre and found that a tiny variation of the light quark mass will dramatically alter the Hoyle state energy in such a manner that carbon and oxygen would not be produced. So, in a way, the Universe has a very tight hold on how life may form.

“The Hoyle state of carbon is key,” NC State physicist Dean Le says. “If the Hoyle state energy was at 479 keV or more above the three alpha particles, then the amount of carbon produced would be too low for carbon-based life.

“The same holds true for oxygen,” he adds. “If the Hoyle state energy were instead within 279 keV of the three alphas, then there would be plenty of carbon. But the stars would burn their helium into carbon much earlier in their life cycle. As a consequence, the stars would not be hot enough to produce sufficient oxygen for life. In our lattice simulations, we find that more than a 2 or 3 percent change in the light quark mass would lead to problems with the abundance of either carbon or oxygen in the universe.”

The findings were reported in a paper published in the journal Nuclear Theory.

share Share

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

The Moon Used to Be Much Closer to Earth. It's Drifting 1.5 Inches Farther From Earth Every Year and It's Slowly Making Our Days Longer

The Moon influences ocean tides – and ocean tides, in some ways, influence the Moon back.

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

Scientists Finally Prove Dust Helps Clouds Freeze and It Could Change Climate Models

New analysis links desert dust to cloud freezing, with big implications for weather and climate models.

This Unbelievable Take on the Double Slit Experiment Just Proved Einstein Wrong Again

MIT experiment shows even minimal disturbance erases light’s wave pattern, proving Einstein wrong

After 100 years, physicists still don't agree what quantum physics actually means

Does God play dice with the universe? Well, depends who you ask.

Physicists Make First Qubit out of Antimatter and It Could One Day Explain Why the Universe Exists At All

Antimatter was held in a qubit state for nearly a minute.

Scientists Superheated Gold to 14 Times Its Melting Point and It Remained Solid

No laws of physics were harmed in this process.

This Startup Claims It Can Turn Mercury Into Gold Using Fusion Energy and Scientists Are Intrigued

The age-old alchemist's dream may find new life in the heart of a fusion reactor.

Our Radar Systems Have Accidentally Turned Earth into a Giant Space Beacon for the Last 75 Years and Scientists Say Aliens Could Be Listening

If aliens have a radio telescope, they already know we exist.