homehome Home chatchat Notifications


Nuclear fission amounts for half of Earth's heat and energy

The relatively new theory of plate tectonics is still uncertain about what is the driving force behind the tectonic movement; now, scientists working at the Kamioka Liquid-Scintillator Antineutrino Detector (KamLAND) and the Borexino Detector believe they are close to finding out the answer to that question, after using neutrino detectors and measuring the flow of […]

Mihai Andrei
July 19, 2011 @ 5:19 am

share Share

The relatively new theory of plate tectonics is still uncertain about what is the driving force behind the tectonic movement; now, scientists working at the Kamioka Liquid-Scintillator Antineutrino Detector (KamLAND) and the Borexino Detector believe they are close to finding out the answer to that question, after using neutrino detectors and measuring the flow of the antithesis of these neutral particles as they emanate from our planet. Nuclear fission would also amount for half of the Earth’s heat.

Neutrinos and antineutrinos are extremely interesting particles. They are electronic particles that travel at a speed closer to the speed of light, and can move freely through mass and space due to their lack of electronic charge; the magmatic rocks within our planet all contain these particles, in radioactive elements such as uranium, potassium and thorium. Over the billions of years in our planet’s history, these elements have been radioactively decaying, producing heat, energy, as well as these neutrinos and antineutrinos, pretty much in the same way that a nuclear reactor does. Thus, these particles could be considered as a marker for estimating how much energy and heat was produced in this process.

So just how much heat are we talking about ? Researchers estimate that we are dealing with about 20 terawatts of heat, roughly double than what humanity is using at the present. This could also provide the necessary energy to literally move mountains, as has happened during the tectonic history.

Earth’s total heat is estimated at roughly 44 terawatts, a number estimated from calculations conducted on the very deep boreholes from the crust, so nuclear fission would be responsible for almost half of all that. The rest is a result of processes that took place when the Earth was formed, or during some other processes researchers have yet to uncover. Some of the heat is most likely trapped in the nickel-iron internal core of our planet, while the nuclear decay happens mostly in the mantle and in the crust. While there is still something to decay and this process continues, the continents will continue to move and collide, and from what can be estimated at this point, that will not happen for many millions of years.

share Share

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

One of Earth’s rarest gems finally reveals its secrets at the Smithsonian.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Scientists Used Lasers To Finally Explain How Tiny Dunes Form -- And This Might Hold Clues to Other Worlds

Decoding how sand grains move and accumulate on Earth can also help scientists understand dune formation on Mars.

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

Identical Dinosaur Prints Found on Opposite Sides of the Atlantic Ocean 3,700 Miles Apart

Millions of years ago, the Atlantic Ocean split these continents but not before dinosaurs walked across them.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Scientists Tracked a Mysterious 200-Year-Old Global Cooling Event to a Chain of Four Volcanoes

A newly identified eruption rewrites the volcanic history of the 19th century.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

This Wild Laser Setup Reads Tiny Letters From Over 1.3 Kilometers Away

A 1950s astronomy technique was used to read pea-sized letters over 1.3 kilometers away.