homehome Home chatchat Notifications


First Universal Two-Qubit quantum processor created

Physicists from NIST (National Institute of Standards and Technology) have demonstrated what they claim to be the first universal programmable quantum information processor that will be able to run any program allowed by quantum mechanics (the set of principles that describe the atomic and subatomic matter). They managed to accomplish this using two quantum bits […]

Mihai Andrei
November 17, 2009 @ 12:05 pm

share Share

qbit Physicists from NIST (National Institute of Standards and Technology) have demonstrated what they claim to be the first universal programmable quantum information processor that will be able to run any program allowed by quantum mechanics (the set of principles that describe the atomic and subatomic matter). They managed to accomplish this using two quantum bits (qubits) of information.

This processor could prove to be a major breakthrough for a future quantum computer, that could very well be the ‘evolutionary leap’ in the computers’ life thus resulting the possible solve of problems that are untouchable today. The discovery was presented in the latest edition of Nature Physics and this marks the first time anybody has moved beyond asking a single task from a quantum computer.

“This is the first time anyone has demonstrated a programmable quantum processor for more than one qubit,” says NIST postdoctoral researcher David Hanneke, first author of the paper. “It’s a step toward the big goal of doing calculations with lots and lots of qubits. The idea is you’d have lots of these processors, and you’d link them together.”

The processor basically stores binary information in just two beryllium ions held in an electromagnetic ‘trap’, and then handled with ultraviolet lasers. With these in hand, the NIST team managed to perform 160 different processing routines using just the two qubits. Although practically there is an infinite number of programs you can perform with the two qubits, the 160 are pretty much totally relevant, and they prove that the processor is “universal”, Hanneke says.

Of course there will be many more qubits and logic operations to solve bigger problems, but when you come to think about it, all this was done with just two atoms, basically; and the operations they performed were no easy task. Each program consisted of 31 logic operations, 15 of which were varied during programming.

share Share

Want to make the perfect pasta? Physics finally has the answer

Cacio e pepe has just three ingredients, but mastering it is harder than it looks.

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

A strange particle traveled across the universe and slammed into the deep sea.

This underwater eruption sent gravitational ripples to the edge of the atmosphere

The colossal Tonga eruption didn’t just shake the seas — it sent shockwaves into space.

New Quantum Navigation System Promises a Backup to GPS — and It’s 50 Times More Accurate

An Australian startup’s device uses Earth's magnetic field to navigate with quantum precision.

This Solar-Powered Device Sucks CO2 From the Air—and Turns It Into Fuel

Researchers harness sunlight to convert CO2 into sustainable fuel.

Japanese Scientists Just Summoned Lightning with a Drone. Here’s Why

The drone is essentially a mobile, customizable, lightning rod.

The UAE Wants AI to Write Its Laws — What Could Possibly Go Wrong?

But can machines really grasp justice, fairness, and human rights?

Packed Festival Crowds Actually Form Living Vortices -- And You Can Predict Them with Physics

The physics of crows explains why they sometimes move like waves.

Scientists Found a Way to Turn Falling Rainwater Into Electricity

It looks like plumbing but acts like a battery.

AI Made Up a Science Term — Now It’s in 22 Papers

A mistranslated term and a scanning glitch birthed the bizarre phrase “vegetative electron microscopy”