homehome Home chatchat Notifications


Fermilab's Tevatron accelerator hints Higgs boson existance, confirms LHC data

The biggest manhunt in physics history is steadily closing in on its target. Wanted – Higgs boson, also known as the God Particle. Reason – explain why objects have mass and provide “missing link” for standard model of physics. Sketch portrait – mass around 125 GeV. Last seen – Fermilab Tevatron particle accelerator. If you […]

Tibi Puiu
March 7, 2012 @ 8:06 am

share Share

The biggest manhunt in physics history is steadily closing in on its target. Wanted – Higgs boson, also known as the God Particle. Reason – explain why objects have mass and provide “missing link” for standard model of physics. Sketch portrait – mass around 125 GeV. Last seen – Fermilab Tevatron particle accelerator. If you happen to sight the particle, please contact your local theoretical physicist at once. Reward – access to the birth of the Universe.

The Tevatron led the high-energy physics world for two decades before its shutoff in 2011. (c) Fermilab

The Tevatron led the high-energy physics world for two decades before its shutoff in 2011. (c) Fermilab

Physicists at the Fermi National Accelerator Laboratory recently reported that they’ve found a bump in their data that might well describe the elusive Higgs boson, a hypothesized particle long considered responsible for granting objects mass.  Fermilab’s Tevatron accelerator was shut down in September last year, however data from its last two experiments were still being crunched, and so far results roughly agree with the controversial findings reported last December by two independent studies at the Large Hadron Collider, CERN.

“Based on the current Tevatron data and results compiled through December 2011 by other experiments, this is the strongest hint of the existence of a Higgs boson,” said the report, which will be presented on Wednesday by Wade Fisher of Michigan State University to a physics conference in La Thuile, Italy.

Physicists from both the CDF and DZero collaborations found excesses in their data that could be interpreted as coming from a Higgs boson with a mass in the region of 115 to 135 GeV. This fits well with the CERN results which hypothesized the Higgs boson is in the range of between 115 and 127 GeV. For comparisson, a proton has a mass of 1 GeV, while an electron of .5 GeV.

[RELATED] What is a Higgs boson and why you should care

Various statements regarding the eventual sighting of the Higgs boson have been hecticly coming on and off both Fermilab and LHC, but typically when one of the groups reported it, the other ruled it out. This is the first time that different, independent collider detectors provide congruent studies. Of course, this is far from providing clear evidence of its existence, however considering the recent, ever constant, breakthroughs scientists are confident they’re almost at the end of their search.

“The end game is approaching in the hunt for the Higgs boson,” says Jim Siegrist, DOE associate director of science for high energy physics.

“This is an important milestone for the Tevatron experiments, and demonstrates the continuing importance of independent measurements in the quest to understand the building blocks of nature.”

CERN has said that the collider will gather enough data this year either to confirm the existence of the Higgs boson or to rule it out forever. If the particle doesn’t exist, physicists will have to come up with another theory of how the Universe came to existence. If indeed, the particle exists, then in most likelihood, it will open a new set of questions around the Standard Model than it answers.

The Hadron collider, now on winter break, will start up again in April.

share Share

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

This Wild Laser Setup Reads Tiny Letters From Over 1.3 Kilometers Away

A 1950s astronomy technique was used to read pea-sized letters over 1.3 kilometers away.

Golden Dome or Glass Ceiling? Why Physicists Say Trump's Planetary-Scale Defense System Might Never Work

Inside Trump's $175 billion plan to build a missile shield in space.

France has a new laser rifle that can melt electronics from 500 meters away

This isn’t your average battlefield weapon.

The Strongest Solar Storm Ever Was 500 Times More Powerful Than Anything We've Seen in Modern Times. It Left Its Mark in a 14,000-Year-Old Tree

The ancient event, over 500 times stronger than any modern storm, would be devastating were it to happen today.

This is absolutely the best way to crack an egg, according to science

The side of the egg is, surprisingly, more resilient. It acts like a shock absorber.