homehome Home chatchat Notifications


New exotic subparticle confirmed by LHC scientists

Once with the discovery and confirmation of the Higgs boson, the Large Hadron Collider in Geneva proved its money worth and garnered international appraise. Despite the LHC is currently shutdown for its periodical maintenance (the restart procedure is well underway, with the particle accelerator expected to become fully operational again in 2015), physicists aren’t slaking. […]

Tibi Puiu
April 11, 2014 @ 7:33 am

share Share

Once with the discovery and confirmation of the Higgs boson, the Large Hadron Collider in Geneva proved its money worth and garnered international appraise. Despite the LHC is currently shutdown for its periodical maintenance (the restart procedure is well underway, with the particle accelerator expected to become fully operational again in 2015), physicists aren’t slaking. The data gathered from experiments performed at the LHC is enough to keep scientists busy for years to come. For instance,  the LHCb collaboration, who run one of four large experiments at the LHC, confirms the existence of a new exotic particle, first discovered in Japan a few years ago.

At the turn of the last century, things were much simpler for the lives of physicists. We knew all matter is comprised of molecules and atoms, which at their own turn are comprised of a nuclear core (made up of protons and neutrons) and an orbiting electron shell. Physics has long evolved past this basic knowledge however, once with quantum field theory. Following the first particle colliders, both in space and on Earth, physicists have found that particles are comprised of a number of truly elementary subparticles, like quarks, leptons or bosons. Then there’s a slew of so-called hypothetical subparticles predicted by supersymmetry, but as of yet unconfirmed.

Exotic hadron

A view of the LHCb experiment at underground Point 8 on the Large Hadron Collider (LHC). The prominent tube is the LHC beam pipe, in which protons circulate at close to the speed of light (Image: Anna Pantelia/CERN)

A view of the LHCb experiment at underground Point 8 on the Large Hadron Collider (LHC). The prominent tube is the LHC beam pipe, in which protons circulate at close to the speed of light (Image: Anna Pantelia/CERN)

In 2008 the Belle Collaboration in Japan reported the observation of a new exotic particle, the  Z(4430)–  (of negative charge). The initial readings suggested that the particle has a mass that puts it in a dense forest of charmonium states (particles made up of specific quarks like charm quark and charm antiquark), yet all particles in this state have a neutral charge.

This is where the LHC step in to elucidate. Researchers here performed more than 180 trillion collisions resulting in 25,000 decays of mesons  (quarks paired with antiquarks). After finally shifting through all the date, researchers have announced recently that the existence of Z(4430) with extremely high confidence: significance of 13.9 sigma, well above the usual 5 sigma threshold required to declare a discovery. The LHCb didn’t just confirm the particle, however, it went on to characterize its state – spin and polarity.

“The significance of the Z (4430) signal is overwhelming – at least 13.9 sigma – confirming the existence of this state,” says LHCb spokesperson Pierluigi Campana. “The LHCb analysis establishes the resonant nature of the observed structure, proving that this is really a particle, and not some special feature of the data.”

Now that the Z(4430)  particle has been confirmed by two independent experiments, physicists can concentrate on unraveling its nature. For instance, it’s believed the particle is the firmest evidence yet of a tetraquark – a four-quark state. LHC physicists believe the particle  is most likely to be made of a charm, anti-charm, down and anti-up quark. A truly exotic particle,  Z(4430)   isn’t likely to be alone. No doubt more similar findings will come off the LHC project, once it goes back online.

The findings were reported in a paper published in the journal Physical Review Letters.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.