homehome Home chatchat Notifications


Excitons observed in action for the first time

A technique developed by MIT researchers reveals the motion of energy-carrying quasiparticles (excitons) in solid material. Let’s work that out in common English. Quasiparticles aren’t technically particles, but they act like they are. It’s hard to give a definition without going into more complicated physics here, but a quasiparticle is a disturbance, in a medium, that behaves […]

Mihai Andrei
April 21, 2014 @ 4:41 pm

share Share

A technique developed by MIT researchers reveals the motion of energy-carrying quasiparticles (excitons) in solid material. Let’s work that out in common English.

exciton

Quasiparticles aren’t technically particles, but they act like they are. It’s hard to give a definition without going into more complicated physics here, but a quasiparticle is a disturbance, in a medium, that behaves as a particle and that may conveniently be regarded as one. They occur when a microscopically complicated system behaves as if it were particle. Excitons are quasiparticles responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits. They have been theoretically understood for decades (at least generally), but they have never been observed in practice – until now, that is.

Now scientists at MIT and the City University of New York have achieved that feat, imaging excitons’ motions directly. This doesn’t only provide valuable insight into natural energy-transfer processes such as photosynthesis, but could also have direct applications in electronics and renewable solar energy. MIT postdocs Gleb Akselrod and Parag Deotare, professors Vladimir Bulovic and Marc Baldo, and four others describe their discovery in Nature Communications.

“This is the first direct observation of exciton diffusion processes,” Bulovic says, “showing that crystal structure can dramatically affect the diffusion process.”

They emphasized that studying excitons could prove to be valuable soon rather than later.

“Excitons are at the heart of devices that are relevant to modern technology,” Akselrod explains: The particles determine how energy moves at the nanoscale. “The efficiency of devices such as photovoltaics and LEDs depends on how well excitons move within the material,” he adds.

The most interesting behavior is when an exciton, which acts as if it were a particle, pairs an electron, which carries a negative charge, with a place where an electron has been removed, known as a hole. The result is that the system has no electrical charge, but it does carry energy. That process happens a lot in solar energy: in a solar cell, an incoming photon may strike an electron, kicking it to a higher energy level. The energy is propagated through an exciton – chargeless, but still carrying energy.

“People always assumed certain behavior of the excitons,” Deotare says. Now, using this new technique — which combines optical microscopy with the use of particular organic compounds that make the energy of excitons visible — “we can directly say what kind of behavior the excitons were moving around with.” This advance provided the researchers with the ability to observe which of two possible kinds of “hopping” motion was actually taking place.

The good thing is that while this method was highly innovative, it’s not really that complicated or expensive. Scientists explain it to spread widely in labs throughout the world.

“It’s a very simple technique, once people learn about it,” Akselrod says, “and the equipment required is not that expensive.”

Source: MIT News.

 

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

The Moon Used to Be Much Closer to Earth. It's Drifting 1.5 Inches Farther From Earth Every Year and It's Slowly Making Our Days Longer

The Moon influences ocean tides – and ocean tides, in some ways, influence the Moon back.

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.