homehome Home chatchat Notifications


Electron microscope based on revolutionary technique set to provide highest resolution images ever

Since they were first introduced more than 70 years ago, electron microscopes have aided researchers from a diverse array of fields of science reach some of the world’s greatest scientific breakthroughs – most often they’ve been considered indispensable. They’ve well reached their limits, however, and University of Sheffield researchers sought to find an alternate route for sub-atomic imaging. […]

Tibi Puiu
March 7, 2012 @ 1:30 pm

share Share

Since they were first introduced more than 70 years ago, electron microscopes have aided researchers from a diverse array of fields of science reach some of the world’s greatest scientific breakthroughs – most often they’ve been considered indispensable. They’ve well reached their limits, however, and University of Sheffield researchers sought to find an alternate route for sub-atomic imaging.

Oval shaped gold particles are 5nm diameter with lines, layers of atoms, across them.

Oval shaped gold particles are 5nm diameter with lines, layers of atoms, across them. (c) University of Sheffield

After three years of hard work, the scientists reached a breakthrough, after they developed a new method, called electron ptychography, which they claim will lead to highest resolution images in the world. The findings were published in the journal Nature Communications.

The scientists scrapped the electrostatic and electromagnetic lenses used by the conventional electron microscope, and instead chose to reconstruct scattered electron-waves after passing through the sample using computers. The new technique allowed for a five-fold increase in resolution over the electron lens. The researchers are confident enough to claim their breakthrough will transform sub-atomic scale transmission imaging.

Project leader Professor John Rodenburg, of the University of Sheffield´s Department of Electronic and Electrical Engineering, explains how the electron ptychography microscope works.

“We measure diffraction patterns rather than images. What we record is equivalent to the strength of the electron, X-ray or light waves which have been scattered by the object – this is called their intensity. However, to make an image, we need to know when the peaks and troughs of the waves arrive at the detector – this is called their phase.

“The key breakthrough has been to develop a way to calculate the phase of the waves from their intensity alone. Once we have this, we can work out backwards what the waves were scattered from: that is, we can form an aberration-free image of the object, which is much better than can be achieved with a normal lens.

“A typical electron or X-ray microscope image is about one hundred times more blurred than the theoretical limit defined by the wavelength. In this project, the eventual aim is to get the best-ever pictures of individual atoms in any structure seen within a three-dimensional object.”

Besides the obvious high resolution capabilities, when coupled with visible light the new microscope allows scientists to image living cells very clearly without the need to stain them, a process which usually kills the cells. Also, the living organisms can be imaged directly through their culture containers, like petri dishes or flasks, and thus offer the opportunity to study them as they develop without disturbing.

source – Sheffield University

share Share

Want to make the perfect pasta? Physics finally has the answer

Cacio e pepe has just three ingredients, but mastering it is harder than it looks.

The Fat Around Your Thighs Might Be Affecting Your Mental Health

New research finds that where fat is stored—not just how much you have—might shape your mood.

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

A strange particle traveled across the universe and slammed into the deep sea.

This underwater eruption sent gravitational ripples to the edge of the atmosphere

The colossal Tonga eruption didn’t just shake the seas — it sent shockwaves into space.

New Quantum Navigation System Promises a Backup to GPS — and It’s 50 Times More Accurate

An Australian startup’s device uses Earth's magnetic field to navigate with quantum precision.

This Solar-Powered Device Sucks CO2 From the Air—and Turns It Into Fuel

Researchers harness sunlight to convert CO2 into sustainable fuel.

Japan Plans to Beam Solar Power from Space to Earth

The Sun never sets in space — and Japan has found a way to harness this unlimited energy.

Japanese Scientists Just Summoned Lightning with a Drone. Here’s Why

The drone is essentially a mobile, customizable, lightning rod.

Packed Festival Crowds Actually Form Living Vortices -- And You Can Predict Them with Physics

The physics of crows explains why they sometimes move like waves.

Scientists Found a Way to Turn Falling Rainwater Into Electricity

It looks like plumbing but acts like a battery.