homehome Home chatchat Notifications


Direct measurement of Van der Waals force made for the first time

Scientists at the Laboratoire Charles Fabry (LCF) in Palaiseau and the University of Lille have for the very first time performed a direct measurement of a Van der Waals force – the weak intermolecular force that causes, in some cases when there isn’t a strong force present, to attract and “stick” to one another. The Van […]

Tibi Puiu
July 5, 2013 @ 9:49 am

share Share

Scientists at the Laboratoire Charles Fabry (LCF) in Palaiseau and the University of Lille have for the very first time performed a direct measurement of a Van der Waals force – the weak intermolecular force that causes, in some cases when there isn’t a strong force present, to attract and “stick” to one another. The Van der Waals force is what actually most of the time keeps gas molecules together, as well as liquids and some solids, and allows them to travel in bulk as a fluid. Some animals like geckos use Van der Waals forces to climb just about any surface.

This fantastic achievement was made after the researchers trapped two Rydberg atoms with a laser and then measured the force as a function of the distance separating them. Previously, indirect measurements of Van der Waals force were made with varying degree of accuracy. Examples include analysing the net forces experienced by macroscopic bodies or using spectroscopy to work out the long-range behaviour of the force between two atoms in a diatomic molecule.

“What we have done here, for the first time to our knowledge, is to measure directly the Van der Waals interaction between two single atoms that are located at a controlled distance, chosen by the experimenter,” says Thierry Lahaye, who is part of the LCF team.

via agpa.uakron.edu

via agpa.uakron.edu

Direct measurement of Van der Waals forces has eluded scientists up until now, however, since atoms are very spaced apart by very short distances, making it difficult to measure the distance between them. The French researchers had to use Rydberg atoms to solve one part of the problem. These atoms are marge larger than most of the others, and thus have a large relative distance between them. Also, these atoms have one electron in a highly excited state. This means that they have a very large instantaneous dipole moment – and therefore should have very strong Van der Waals interactions over relatively long distances.

To measure the Van der Waals between the two Rydberg atoms, the researchers first trapped each individual atom with tightly focused laser beams. Another laser beam fired at a specific wavelength was the shone on the atoms, which caused them to oscillate. By measuring these oscillations, the team worked out the Van der Waals force between the two Rydberg atoms. Moreover, by adjusting the trapping laser beam, the scientists were able to adjust the distance between the two atoms. As the researchers changed the distance R between the atoms, the force varied as 1/R6– exactly as expected for the Van der Waals force.

The French researchers work will most likely have more significant impact in practical applications, then in the actual milestone put in place. With their direct measurement of the Van der Waals, the researchers show that the quantum evolution of the state of the two interacting Rydberg atoms was fully coherent,  identical to that of a quantum-logic gate operating on two quantum bits (qubits).

“This will allow us to engineer small quantum systems of increasing size, from two to hopefully a few tens of Rydberg atoms, over which we have full control of the interactions,” explains Lahaye.

Another step forward towards developing the first quantum information devices. ZME folks, are you ready for the age of quantum computers? We’re really stoked about this; share your thoughts in the comment section below.

The experiment is described in Physical Review Letters. [source Physics World]

share Share

Want to make the perfect pasta? Physics finally has the answer

Cacio e pepe has just three ingredients, but mastering it is harder than it looks.

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

A strange particle traveled across the universe and slammed into the deep sea.

This underwater eruption sent gravitational ripples to the edge of the atmosphere

The colossal Tonga eruption didn’t just shake the seas — it sent shockwaves into space.

New Quantum Navigation System Promises a Backup to GPS — and It’s 50 Times More Accurate

An Australian startup’s device uses Earth's magnetic field to navigate with quantum precision.

Japanese Scientists Just Summoned Lightning with a Drone. Here’s Why

The drone is essentially a mobile, customizable, lightning rod.

Packed Festival Crowds Actually Form Living Vortices -- And You Can Predict Them with Physics

The physics of crows explains why they sometimes move like waves.

Scientists Found a Way to Turn Falling Rainwater Into Electricity

It looks like plumbing but acts like a battery.

This Simple Trick Can Make Your Coffee Taste Way Better, Says Physics

If you love pour-over coffee it could serve you well to change how you pour.

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Physicists just explained why the pop of a beer bottle sounds so perfect

A high-speed peek into what really happens when your beer bottle goes “pop.”