homehome Home chatchat Notifications


Scientists cool molecules just a hair over absolute zero (1,000,000 times colder than space)

In a breakthrough moment, researchers at MIT successfully cooled sodium potassium gas molecules (NaK) near absolute zero. At this temperature, matter behaves significantly different and starts exhibiting quantum effects. This is the coldest any molecule has been recorded ever.

Tibi Puiu
June 12, 2015 @ 11:20 am

share Share

In a breakthrough moment, researchers at MIT successfully cooled sodium potassium gas molecules (NaK) near absolute zero. At this temperature, matter behaves significantly different and starts exhibiting quantum effects. This is the coldest any molecule has been measured so far.

In this artist's illustration, the NaK molecule is represented with frozen spheres of ice merged together: the smaller sphere on the left represents a sodium atom, and the larger sphere on the right is a potassium atom.  Illustration: Jose-Luis Olivares/MIT

In this artist’s illustration, the NaK molecule is represented with frozen spheres of ice merged together: the smaller sphere on the left represents a sodium atom, and the larger sphere on the right is a potassium atom.
Illustration: Jose-Luis Olivares/MIT

Normally, at ambient temperature, molecules zip by at colossal speeds, colliding and reacting with each other. There probably are millions of such collisions happening every moment in the air you breath. When matter gets really cold though, its movements near to a halt as it’s chilled closer and closer to absolute zero (0 Kelvin or -273.15 degrees Celsius). Other strange things start happening as well. For instance, when Helium is cooled down to near zero the substance (a gas at room temperature) turns into a liquid with no viscosity – a superfluid. But it’s a lot easier to cool single atoms, like He, than molecules, which comprise two or more atoms linked by electromagnetic forces.

Molecules are a lot more complicated since they exhibit more complex degrees of freedom:  translation, vibration, and rotation. So, cooling the molecules directly is challenging, if not impossible with current means. To cool the sodium potassium gas, the researchers had to employ multiple steps. First, the MIT team used lasers and evaporative cooling to cool clouds of individual sodium and potassium atoms to near absolute zero. Typically, sodium and potassium don’t form compounds because they repel each other. However, the researchers “glued” them together by prompting the atoms to bond with an electromagnetic field. This mechanism is known as “Feshbach resonance.”

The resulting bond, however, is very weak – a “fluffy molecule”, as the researchers call it. To bring the atoms closer together, and strengthen the bond as a consequence, the researchers employed a novel technique used previously  in 2008 by groups from the University of Colorado, for potassium rubidium (KRb) molecules, and the University of Innsbruck, for non-polar cesium­ (Ce) molecules. Yet again, the weak molecules were exposed to a pair of laser pulses, the large frequency difference of which exactly matched the energy difference between the molecule’s initial, highly vibrating state, and its lowest possible vibrational state. The sodium potassium molecule absorbed the lower energy from one laser and emitted energy to the higher-frequency laser. So, what the MIT researchers got at the end were very low energy state, ultra-cold molecules sitting as low as 500 nanoKelvins or just billionths of a degree above absolute zero.

The resulting ultra-cool molecules were quite stable, with a relatively long lifetime, lasting about 2.5 seconds. The molecules also exhibited very strong dipole moments — strong imbalances in electric charge within molecules that mediate magnet-like forces between molecules over large distances. Concerning their speed, at such a cool temperature, the molecules average speeds of centimeters per second and are almost at their absolute lowest vibrational and rotational states.

“In the case where molecules are chemically reactive, one simply doesn’t have time to study them in bulk samples: They decay away before they can be cooled further to observe interesting states,” says Martin Zwierlein, professor of physics at MIT and a principal investigator in MIT’s Research Laboratory of Electronics. “In our case, we hope our lifetime is long enough to see these novel states of matter.”

The next step is cooling the molecule even further to maybe catch a glimpse of the quantum mechanical effects that are predicted should happen.  Findings appeared in the journal Physical Review Letters.

“We are very close to the temperature at which quantum mechanics plays a big role in the motion of molecules,” Zwierlein says. “So these molecules would no longer run around like billiard balls, but move as quantum mechanical matter waves. And with ultracold molecules, you can get a huge variety of different states of matter, like superfluid crystals, which are crystalline, yet feel no friction, which is totally bizarre. This has not been observed so far, but predicted. We might not be far from seeing these effects, so we’re all excited.”

edit: missed a very important “minus” sign for the absolute zero temperature value in Celsius (-273.15 degrees Celsius)

share Share

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

Want to make the perfect pasta? Physics finally has the answer

Cacio e pepe has just three ingredients, but mastering it is harder than it looks.

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.

Ice Age Humans in Ukraine Were Masterful Fire Benders, New Study Shows

Ice Age humans mastered fire with astonishing precision.

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.

University of Zurich Researchers Secretly Deployed AI Bots on Reddit in Unauthorized Study

The revelation has sparked outrage across the internet.

Giant Brain Study Took Seven Years to Test the Two Biggest Theories of Consciousness. Here's What Scientists Found

Both came up short but the search for human consciousness continues.

The Cybertruck is all tricks and no truck, a musky Tesla fail

Tesla’s baking sheet on wheels rides fast in the recall lane toward a dead end where dysfunctional men gather.