homehome Home chatchat Notifications


Scientists image an atom's shadow for the first time

For the first time ever the shadow of an atom (yes, even an atom can cast a shadow) has been imaged using a complex technique which involved a laser beam and a a Fresnel lens. The culmination of their five-year work is this fantastic snapshot from above, and although this dark spot is quite tiny, the […]

Tibi Puiu
December 18, 2012 @ 9:01 am

share Share

With implications for everything from quantum computing to microbiology, scientists have for the first time imaged the shadow of an atom. (c) Kielpinksi Group/Centre for Quantum Dynamics

With implications for everything from quantum computing to microbiology, scientists have for the first time imaged the shadow of an atom. Bear in mind that the concentric rings around the dark spot (the actual shadow) aren’t part of the shadow, but mere n artifact of subtle changes in the optical wavelength filter the researchers were using. (c) Kielpinksi Group/Centre for Quantum Dynamics

For the first time ever the shadow of an atom (yes, even an atom can cast a shadow) has been imaged using a complex technique which involved a laser beam and a a Fresnel lens. The culmination of their five-year work is this fantastic snapshot from above, and although this dark spot is quite tiny, the implications of the research in quantum physics are quite sensible.

The scientists at Griffith University lead by Erik Streed, a physics lecturer at the university, went on a quest to find out which was the smallest thing that could cast a shadow. A laser beam was carefully fired at a single Ytterbium atom – a chemical element capable of absorbing the right kind of colours to serve the scientists’ interests – suspended in empty space which cast a shadow. Then using an ultra hi-res miscroscope based on a Fresnel lens, a fundamental optics instrument that focuses light much in the same manner to a lighthouse lens, the scientists were able to produce high-resolution images of the atom and its shadow.

“By using the ultra hi-res microscope we were able to concentrate the image down to a smaller area than has been achieved before, creating a darker image which is easier to see,” Dave Kielpinski, a professor at the Centre for Quantum Dynamics at Griffith University, said in a written statement.

The figure above shows how a laser beam (orange) passing by a single atom (blue) leaves a dark shadow in its wake, with the actual picture of the single atom shadow shown on the right end. (c) Kielpinksi Group/Centre for Quantum Dynamics

The figure above shows how a laser beam (orange) passing by a single atom (blue) leaves a dark shadow in its wake, with the actual picture of the single atom shadow shown on the right end. (c) Kielpinksi Group/Centre for Quantum Dynamics

A tiny dark dot with huge implications

The size of the shadow is set by the wavelength of light, which is about a thousand times larger than the actual atom. Since atoms have well understood light absorption properties, predictions can be made about the depth of a shadow cast, improving communication between the individual atoms performing calculations. Too much light or X-ray damages living tissues and biological samples, hampering research and health. By predicting how much light is needed to observe processes within cells by projecting the shadow, scientists can safely study without breaching the threshold.

Findings were published in a  July edition of the journal Nature Communications.

via The Conversation

share Share

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

This Wild Laser Setup Reads Tiny Letters From Over 1.3 Kilometers Away

A 1950s astronomy technique was used to read pea-sized letters over 1.3 kilometers away.

Golden Dome or Glass Ceiling? Why Physicists Say Trump's Planetary-Scale Defense System Might Never Work

Inside Trump's $175 billion plan to build a missile shield in space.

France has a new laser rifle that can melt electronics from 500 meters away

This isn’t your average battlefield weapon.

The Strongest Solar Storm Ever Was 500 Times More Powerful Than Anything We've Seen in Modern Times. It Left Its Mark in a 14,000-Year-Old Tree

The ancient event, over 500 times stronger than any modern storm, would be devastating were it to happen today.

This is absolutely the best way to crack an egg, according to science

The side of the egg is, surprisingly, more resilient. It acts like a shock absorber.