homehome Home chatchat Notifications


Astronomers Pinpoint Origin Of Nature's Most Powerful Magnetic Bursts

Those bursts are from magnetars. You may have some idea about what a white dwarf is, or a  black hole or even a pulsar, but what are magnetars? Magnetars are neutron stars with an extremely powerful magnetic field; their decay powers the emission of copious amounts of high-energy electromagnetic radiation, particularly X-rays and gamma-rays. They pack […]

Mihai Andrei
October 1, 2007 @ 8:18 am

share Share

magnetar
Those bursts are from magnetars. You may have some idea about what a white dwarf is, or a  black hole or even a pulsar, but what are magnetars?

Magnetars are neutron stars with an extremely powerful magnetic field; their decay powers the emission of copious amounts of high-energy electromagnetic radiation, particularly X-rays and gamma-rays. They pack the mass of a sun into a body the size of Manhattan Island – and that’s not the most awesome thing about them. Tiny magnetars have magnetic fields that are at least 100 trillion times as powerful as Earth’s magnetic field.

Their origin is a mistery but this is probably how they are formed: when, in a supernova, a star collapses to a neutron star (it has too much mass to become a white dwarf), its magnetic field increases dramatically in strength.The supernova might lose 10% of its mass in the explosion, or even more. In order for such large stars (10–30 solar masses) not to collapse straight into a black hole, they have to shed a larger proportion of their mass. About 1 in 10 supernova explosions result in a magnetar. In the solid crust of a magnetar, tensions can arise that lead to ‘starquakes’ – astrophysical phenomenons that occur when the crust of a neutron star undergoes a sudden adjustment, analogous to an earthquake on Earth.

Astronomers discovered a magnetar with the NASA’s X-Ray Timing Explorer in July 2003, when it brightened by about 100 times its usual faint luminosity. After that they studied it with the European Photon Imaging Camera, known as EPIC until about March 2006, when the object faded to its pre-outburst brightness. As the magnetar faded, EPIC recorded changes in the energies of the X-rays released.

Then they were able to calculate and describe the physical properties of a magnetar’s surface and magnetic field. The scientists say they are encouraged because the measurement is similar to an earlier estimate made based on how fast the source is “spinning down,” which is the change in the spin period over time. They plan to study more magnetars, using more data from X-ray observatories and they are probably going to find answers to the questions they have.

share Share

After 100 years, physicists still don't agree what quantum physics actually means

Does God play dice with the universe? Well, depends who you ask.

Physicists Make First Qubit out of Antimatter and It Could One Day Explain Why the Universe Exists At All

Antimatter was held in a qubit state for nearly a minute.

Scientists Superheated Gold to 14 Times Its Melting Point and It Remained Solid

No laws of physics were harmed in this process.

This Startup Claims It Can Turn Mercury Into Gold Using Fusion Energy and Scientists Are Intrigued

The age-old alchemist's dream may find new life in the heart of a fusion reactor.

Our Radar Systems Have Accidentally Turned Earth into a Giant Space Beacon for the Last 75 Years and Scientists Say Aliens Could Be Listening

If aliens have a radio telescope, they already know we exist.

Mesmerizing Fluid “Fireworks” Reveal Clues for Trapping Carbon Underground

Simulations show stunning patterns that could shape future carbon capture strategies.

Cycling Is Four Times More Efficient Than Walking. A Biomechanics Expert Explains Why

The answer lies in the elegant biomechanics of how our bodies interact with this wonderfully simple machine.

What Happens When You Throw a Paper Plane From Space? These Physicists Found Out

A simulated A4 paper plane takes a death dive from the ISS for science.

Scientists Found a Way to Turn Falling Rainwater Into Renewable Energy

It looks like plumbing but acts like a battery.

Scientists Are Building a Quantum Computer With Chips Made out of Glass

European researchers are developing quantum computers using light and glass, in a collaboration that promises breakthroughs in computing power, battery technology and scientific discovery.