homehome Home chatchat Notifications


Artificial trees capture wasted kinetic energy, power sensors

To the romantic eye, a tree swaying in the wind is a testimony of nature's heart beat. An engineer might be moved by the same feeling, but he might also add: "well, that looks like a lot of wasted energy."

Tibi Puiu
February 2, 2016 @ 6:23 pm

share Share

trees swaying

To the romantic eye, a tree swaying in the wind is a testimony of nature’s heart beat. An engineer might be moved by the same feeling, but he might also add: “well, that looks like a lot of wasted energy.” A lot of large structures vibrate, hence generate energy, besides trees also, from bridges, to buildings, to the suspensions system of vehicles. Inspired by twigs in the wind, a team of researchers at Ohio State University are designing artificial mechanical trees that generate electricity. The output is very, very small but it’s enough to power some very helpful sensors, and in the future more energy per area could be possible. For now, it looks like a great application in those situations where solar panels aren’t an option.

A twig, a trunk and a PVDF

The researchers aren’t the first to think of using the natural oscillations of trees to generate electricity. Most believe however that it is useless since it’s inherently random motion. Ryan Harne, assistant professor of mechanical and aerospace engineering at Ohio State, begged to differ. He and colleagues mathematically modeled a tree-like structure and found that despite large, random inputs, it is indeed possible to maintain a constant frequency. Further on, Harne learned that by exploiting the structure’s internal resonance (the frequencies at which it will vibrate if physically disturbed),  it is possible to coax an electromechanical tree to vibrate with large amplitudes at a consistent low frequency, even when the tree was experiencing only high frequency forces.

During an experiment, an electromechanical ‘tree’ was devised out of two small steel beams—one a tree “trunk” and the other a “branch”—connected by a strip of an electromechanical material, polyvinylidene fluoride (PVDF), to convert the structural oscillations into electrical energy. The setup was placed on a bench with oscillated the mechanical tree back and forth. The PVDF produced 0.8 volts.

Elsewhere in France, engineers demonstrated the Wind Tree: 72 artificial leaves serving as micro-turbines spinning on a vertical axis, the device will capture energy from winds with speeds as low as 2 meters / second.  It can generate 3.1 KW. Read more.

Elsewhere in France, engineers demonstrated the Wind Tree: 72 artificial leaves serving as micro-turbines spinning on a vertical axis, the device will capture energy from winds with speeds as low as 2 meters / second. It can generate 3.1 KW. Read more.

Then, the team added noise to the system — random and slight nudges in multiple directions, akin to the wind that vibrates a tree outside. What happened was high frequency energy was channeled into low frequency oscillation, and the the trunk and branch vibrated in sync. This significantly improved the output and the system produced around 2 volts.

“Buildings sway ever so slightly in the wind, bridges oscillate when we drive on them and car suspensions absorb bumps in the road,” Harne said. “In fact, there’s a massive amount of kinetic energyassociated with those motions that is otherwise lost. We want to recover and recycle some of that energy.”

Though the voltage is tiny, it’s a great proof of concept that the random oscillations a tree experiences on a daily basis can be harvested. Replace tree with any vibrating structure and it’s basically the same thing. Harne and colleagues envision small, but useful mechanical trees placed through all sorts of locations where conventional off-grid energy generation systems (solar panel, wind turbine etc.) aren’t viable. These could power sensors that monitor the structural integrity of a bridge, for instance, without the hassle of drawing power lines or replacing batteries.

Findings were presented in a paper published in Journal of Sound and Vibration

share Share

A Former Intelligence Officer Claimed This Photo Showed a Flying Saucer. Then Reddit Users Found It on Google Earth

A viral image sparks debate—and ridicule—in Washington's push for UFO transparency.

This Flying Squirrel Drone Can Brake in Midair and Outsmart Obstacles

An experimental drone with an unexpected design uses silicone wings and AI to master midair maneuvers.

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

In Arizona’s desert, a 500-year-old cannon sheds light on conquest, resistance, and survival.

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain