homehome Home chatchat Notifications


Human eye inspired processor is 400 times faster at detecting sub-atomic particles

Inspired by the properties of the human eye, physicists have created a processor that can analyze sub-atomic particles 400 times faster than the current state of the art

Henry Conrad
September 19, 2014 @ 1:33 pm

share Share

Artist's impression of a proton-proton collision producing a pair of gamma rays (yellow) in the ATLAS detector (Image: CERN)

Artist’s impression of a proton-proton collision producing a pair of gamma rays (yellow) in the ATLAS detector (Image: CERN)

Inspired by the properties of the human eye, physicists have created a processor that can analyze sub-atomic particles 400 times faster than the current state of the art. The prototype might significantly speed up the analysis of data from the collisions of particles in high-end particle accelerators like the Large Hadron Collider, at CERN, as early as 2020.

Faster than the blink of an eye

The processor employs a detection algorithm that works much in the same way as the human retina. In our retinas,  individual neurons are specialized to respond to particular shapes or orientations and locally analyze these patterns. This way, the brain is never consciously aware of the processing itself and only interprets the results. Analogously, the “artificial retina” detects a snapshot of the trajectory of each collision which is then immediately analysed, according to CERN physicist Diego Tonelli, one of the collaborators who was involved in the project.

During these collisions, particles are accelerated near the speed of light and smashed together. At these extremely high energies, peculiar things start to happen and new matter is born. Each second the LHC generats some 40 million collisions and each can result in hundreds of charged particles, which are the only kind whose trajectories can be mapped. Clearly, speed is of the essence and the ‘artificial retina’ will definitely come in handy.

“It’s 400 times faster than anything existing or foreseen for high energy physics applications. If implemented in a real experiment it will allow us to collect more interesting data more quickly,” the researchers write.

The LHC received a lot of hype in recent years, after the breakthrough moment of modern physics when the Higgs boson was confirmed using the particle accelerator.  However, the ‘artificial retina’ won’t be employed for experiments that probe elementary particles, like the Higgs boson. Instead, it will be mostly used for ‘flavor physics’, which deals with the interaction of the basic components of matter, the quarks.

“When our detectors take these snapshots of the collisions – to us that’s like the picture that your eye sees and when your brain is scanning that picture and making sense of it, well we try and codify those rules into an algorithm that we run on computers that do the job for us automatically,” Prof Shears said.

“When the LHC continues… we will start to operate with a more intense beam of protons getting a much higher data rate, and then this problem of sifting out what you really want to study becomes really really pressing,” she added.

“This artificial retinal algorithm is one of the latest steps in our mission to [understand the Universe], and it’s really good, it does the job vast banks of computers normally do.”

Right now, the LHC is shutdown for maintenance, but it’s due to come back online in 2015 and resume its hunt for elusive particles. The algorithm won’t be introduced before 2020, however, when an upgrade is slated. The findings were documented in a paper published in the pre-print arXiv server.

 

 

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.